• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 35
  • 26
  • 24
  • 23
  • 21
  • 18
  • 11
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

South Africa’s response in fulfilling her obligations to meet the legal measures of wetland conservation and wise use

Lemine, Bramley Jemain January 2018 (has links)
Thesis (MTech (Environmental Management))--Cape Peninsula University of Technology, 2018. / South Africa is a signatory to the Convention on Wetlands of International Importance especially as Waterfowl Habitat of 1971 (referred to as the Ramsar Convention), which is an international convention making provision for protection and wise use of wetlands. Article 3 of the Ramsar Convention requires signatories to formulate and implement their planning to promote wise use of wetlands within their jurisdiction. “Wise use of wetlands” is defined as “the maintenance of their ecological character, achieved through the implementation of ecosystem approaches, within the context of sustainable development” (Birnie & Boyle, 2009: 674). The concept of wise use has been interpreted to mean sustainable development (de Klemm & Shine, 1999: 47; Birnie & Boyle, 2009: 49; Kiss & Shelton, 2007: 93; Birnie & Boyle, 2009: 674; Sands, 2003: 604), as it pertains to wetlands. Having said this, the National Environmental Management Act 107 of 1998 (NEMA) sets out principles of sustainable development that every organ of state must apply in the execution of their duties. Due to the wise use-sustainable development link, two NEMA principles have been considered to form the basis of this study, i.e. sections 2(4)(l) and 2(4)(r). The first principle places an obligation upon the state to ensure that there is intergovernmental coordination and harmonisation of policies, legislation and action relating to the environment (read to include a wetland); and the second principle is to ensure that specific attention in the management and planning are had to wetlands. Ironically, factors that are identified as hindering wise use include, but are not limited to: conflicting and incomplete sectoral law, absence of monitoring procedures, the absence of legal measures for environmental management of water quantity and quality. Therefore, an analysis will be undertaken to determine the extent to which South Africa’s legislative framework regulating wetland conservation is fulfilling the requirements for the promotion of wise use, through these two principles. Focus was had to environmental and related legislation, policies and regulations that promote and/or constrain wetland conservation and wise use. This study identifies the flaws within the law; and proposes streamlining and, where apposite, amendments to the existing legislative framework regulating wetlands in order for South Africa to fulfil her obligations.
62

Wetland delineation and section 404/401 permitting an internship with Carolina Wetland Services /

Jenkins, Matthew Lee. January 2006 (has links)
Thesis (M. En.)--Miami University, Institute of Environmental Sciences, 2006. / Title from first page of PDF document. Includes bibliographical references (p. 35 [1st set of paginations]).
63

Use of bioindicators and biomarkers to assess aquatic environmental contamination in selected urban wetlands in Uganda

Naigaga, Irene January 2013 (has links)
Pollution of aquatic resources in Uganda is on the increase and the trends are expected to increase with increase in population size and urbanisation. Assessment and mitigation of the environmental impacts on water quality and biodiversity have now become necessary. The aim of the study was to integrate invertebrate and fish as bioindicators and fish histopathology as a biomarker in the assessment of water quality deterioration in urban wetlands in Uganda. The integration harnesses the advantages and counteracts the shortcomings of each method and thus builds a more robust diagnostic tool that gives a better view of the impacts to the entire ecosystem. Four endpoints which included, physicochemical variables, benthic macroinvertebrate bioindicators, fish bioindicators and fish histopathology biomarkers were compared between varied effluent-impacted wetlands (Murchison Bay in Kampala, and Kirinya, Masese and Winday Bay in Jinja) and a non-impacted reference wetland (Lwanika in Mayuge). Results from the effluent-impacted sites differed from the less impacted reference site. The two sampling locations at Murchison Bay (inshore and offshore) and one sampling location at Kirinya (inshore), that were highly impacted with urban effluent, showed elevated nutrient levels, low pH, dissolved oxygen and secchi depth readings. This corresponded with low invertebrate taxa and fish species diversity and richness; and severe histopathological responses in liver, gonads and gills of O. niloticus. Sensitive taxa such as ephemeroptera and trichoptera were completely absent while pollution tolerant taxa Chironomus sp, Corbicula and Oligochaeta were present. Also notable was the absence of many native haplochromines and presence of mainly Brycinus sadleri, Oreochromis niloticus and leucostictus. The organs manifested high prevalence of severe inflammatory and regressive changes and higher organ indices that fell within the pathological category. These sites were consistently classified as highly polluted under the four endpoints. The reference site was classified as least polluted while Masese and Winday Bay were moderately polluted. Results suggested that the approach of using invertebrate and fish as bioindicators and the fish histopathology as a biomarker, in relation to water quality physicochemical variables was a useful tool in highlighting the spatial differences in environmental quality.
64

A review of stakeholder interests and participation in the sustainable use of communal wetlands: the case of the Lake Fundudzi catchment in Limpopo Province, South Africa

Silima, Vhangani January 2007 (has links)
Many rural South African people depend on natural resources for their survival. Wetlands provide some of those natural resources. These are presently are under pressure due to high demand, overexploitation and poor land management. The history of South Africa has been characterised by exclusion of local communities in the process of decision-making and general management of natural resources. Participation of all stakeholders is crucial for successful sustainable natural resource management. Various South African departments are engaged in a number of strategies for promoting meaningful participation of local communities. The South African laws promoting protection and sustainable use of natural resources incorporate democratic principles that require high level of participation from resource users, local communities in particular. Most of the participation techniques used are focused on satisfying political mandates and do not respond to the social context of the resource users. The aim of the study was to review the participation of stakeholders in the project of promoting the sustainable use and protection of the Lake Fundudzi catchment. The idea was to probe stakeholder interests more carefully, and to research tensions that arise in the participation process, using qualitative methodologies. Through the use of questionnaires, observations and document analysis stakeholders’ interests were identified to assess their influence in the process of participation of local stakeholders. The review of stakeholders’ participation in the Lake Fundudzi Project showed that stakeholders’ interests are crucial for meaningful local community participation, communication and education influence. They enable meaningful participation and empowerment. A multi-stakeholders approach enables stakeholders to share roles and responsibilities and the participation process offers an opportunity for local stakeholders to participate democratically in the Project. Power relations affect stakeholder participation, capital dependant participatory initiatives are likely to be at risk, participatory processes are likely to promote the empowerment and knowledge exchange amongst stakeholders, the views of local stakeholders are not always considered by outside support organisation and multi-stakeholder participatory approaches enable the initiative/activity/project to achieve its objectives.
65

Assessment of the long-term response to rehabilitation of two wetlands in KwaZulu-Natal, South Africa

Cowden, Craig January 2018 (has links)
Assessing the outputs and outcomes of wetland rehabilitation activities is recognised by the 'Working for Wetlands' programme in South Africa as important, but to date has been limited. An assessment of the ecological outcomes and the structural outputs of the Working for Wetlands rehabilitation implemented in the Killarney and Kruisfontein wetlands, KwaZulu-Natal, in 2005 was undertaken. The assessment of outcomes included an evaluation of the changes in terms of ecological integrity and the supply of ecosystem services, using WET-Health and WET- EcoServices assessment techniques respectively, and vegetation composition. Improvements in hydrological and geomorphic integrity were recorded in both wetlands, resulting in improved ecosystem services delivery. However, investigation of vegetation composition using the Wetland Index Value and Floristic Quality Assessment Index showed that, seven years after rehabilitation, KiNamey's vegetation composition had improved, but Kruisfontein's vegetation was still largely dominated by pioneer species and appeared to be stable, but in a severely transformed state. The response of these wetlands has shown that sites for rehabilitation should be screened before work begins, and wetlands requiring intensive management of vegetation recovery should be assessed in terms of the objectives and the anticipated benefits of the project. The assessment of the outputs included an evaluation of structural integrity, survival and cost- effectiveness. Limited issues, mostly relating to deviations from the designs during construction, were identified with regards to the structural outputs at each of the wetlands. However, the spreader canals at both Killarney and Kruisfontein wetlands were not functioning as intended and concentrated flows from the spreader canals were evident in both wetlands. The use of spreader canals should therefore be carefully planned and implemented for future wetland rehabilitation projects. Consideration of ZAR per hectare equivalent re-instated/secured provided a useful initial means of determining the cost-effectiveness of the wetland rehabilitation. However, additional factors need to be considered, such as, the nature of the rehabilitation activities, the type and size of the problem being addressed, rehabilitation of priority wetlands, limitations imposed by funders, and risks that need to be addressed by the rehabilitation strategy. Furthermore, the evaluation of the Killarney and Kruisfontein wetlands highlighted the need to revise the Water Research Commission's Wetland Management Series, especially those documents or guidelines relating to rehabilitation planning (WET-RehabPlan), interventions (WET-RehabMethods), and monitoring and evaluation (WET-RehabEvaluate).
66

Sediment linkages in a small catchment in the Mount Fletcher southern Drakensberg region, South Africa

Mzobe, Pearl Nonjabulo January 2014 (has links)
Soil erosion is a persistent problem that requires continued control efforts as agricultural land loses productivity and communities dependent on the land become increasingly vulnerable to decreased food security. The negative effects of soil erosion in Khamopele River catchment, in the Mount Fletcher southern Drakensberg region of South Africa, are manifest in extensive gullying and wetland loss. Soil erosion has resulted in siltation in a recently constructed dam and the alteration of aquatic habitats. This research was undertaken to identify the sources of eroded sediment in the small upper catchments of the Mzimvubu River catchment to inform broader catchment management strategies. The scale of erosion was quantified using field surveys of gully extent and form. Environmental magnetic tracing techniques were used to determine the sources of eroded sediment in Khamopele River and upper Tina River catchments. The radionuclide ¹³⁷Cs was used to determine soil loss over a 55 year period in Khamopele River catchment. The Landscape Connectivity framework was used to describe the sediment source, pathway and sink interactions at sample area level. Results indicated that historical and contemporary land management practices such as uncontrolled grazing, grassland burning and furrows promoted soil erosion in the catchment. Soil erosion was most pronounced in the Taung sample area where there was extensive gullying, tunnelling and subsurface erosion. Environmental magnetic tracing results indicated that there were clear differences in source areas. Despite its prevalence in the area, gully erosion was not shown to be a major source of sediment to downstream sinks. Topsoil and hillslope derived sediment were shown to be mobile in the catchment, suggesting that sheet erosion processes were dominant in the catchment. Radionuclide tracing studies showed that at least 20 cm of soil had been eroded from the Khamopele River catchment surface since 1956. This research has shown that it is possible to distinguish source areas of erosion in the catchment by matching catchment mineral magnetic signatures to those in sink areas. This means that rehabilitation projects can use resources efficiently as the areas needing the most attention can be identified.
67

The hydrogeomorphology of the Featherstone Kloof Catchment

Ntakumba, Stanley Sixolile 29 May 2013 (has links)
Wetlands are an important part of the landscape as hydrogeomorphological ecosystems. Over the centuries their importance has not received relevant attention; instead they have been treated as wastelands impeding development for maximum economic benefits. Research evidence from different parts of the world has influenced the change of such negative perceptions to an extent that the issue of wetlands' rehabilitation/restoration, conservation and management is firmly on the global agenda and local agendas of various countries, as evidenced by the adoption of the Ramsar Convention in 1971, and the Working for Water and Working for Wetlands programmes of the South African government. The aim of this research was to investigate the hydrological and geomorphological functions of a headwater wetland located in the Featherstone Kloof Catchment near Grahamstown, South Africa. The research was based on the hypotheses that wetlands store sediments, attenuate floods, store water and prolong downstream flows. A literature survey was conducted to gauge the state of knowledge about wetlands, particularly their hydrogeomorphology. An attempt was made to locate the study area within the broad historical and spatial context using a number of methods, including the radiocarbon dating of wetland sediments, the review of relevant literature and the analysis of historical hydroclimatic data. The results revealed that the wetland has existed for approximately 2000 years - as the oldest radiocarbon date obtained was 1850±50 BP. An analysis of more than a century (+120 years) long Grahamstown rainfall series indicated a steady fluctuation of rainfall around the mean, with regular decada1 cycles of wet and dry spells. Years with more rain below average were more common than those with higher rainfall, and storms events were quite common in the III area over the period. The distribution of seasons in the area over a calendar year period was demonstrated through the use of evaporation data. An intensive monitoring of hydrological and geomorphological variables was carried out using a combination of methods. The topography of the instrumented site was determined using a Total Station from reference benchmarks. Hydrological measurements included a nest of forty-eight piezometers for water table monitoring, and streamflow gauges at the upstream and downstream limits of the study site. Soil stratigraphic analysis was carried out through field techniques and laboratory measurements. A survey of wetland sediments was carried out after the main floods events. Data generated were used to analyse relationships between various variables and their role on the functioning of the wetland. The water balance of the wetland was quantified. The results indicated that the wetland was able to perform the cited hydrogeomorphological functions to some extent. For example, one of the key findings of this research is that the wetland was important in sustaining base flows under normal circumstances. However, the wetland did little to attenuate large floods. The results also revealed some important questions that require further research, including the role played by extreme flood events in altering wetland characteristics, the contribution of each water balance component in the hydrological functioning of wetlands, and importance of quantifying sediment budgets of headwater wetlands. The study demonstrated the complex nature of the wetland hydro geomorphology and that certain questions about wetlands require direct field monitoring to be better understood. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
68

Developing and testing the congruency of selected biological indicators and an existing tool designed to assess wetland health in agricultural settings in the KZN Midlands

Kubheka, Patrick Skhumbuzo January 2018 (has links)
Despite the fact that wetlands have been understood to be important for a wide range of ecosystem services, wetlands continue to be degraded globally. There has been a growing need to develop biomonitoring tools that reflect the present ecological state of wetlands, but very few attempts have been made in South Africa to achieve this, and those that have attempted this have generally achieved limited success. This study was conducted to develop and test the congruency of four selected biological indicators (dragonflies, frogs, macroinveterbrates and plants) in relation to the assessment of present ecological state using an existing method in South Africa, "WET-Health". WET-Health assessments rely primarily on transformations to a wetland that result from human impacts in both the catchment and the wetland itself. Using the tool, a health score is obtained that is consistent with the Department of Water Affairs (DWA) current "present ecological state” as applied to river health assessment. The study was conducted in agricultural settings of the Midlands of KwaZulu-Natal based on 13 wetlands. The selected wetlands were scored using WET - Health and grouped in four different ecological condition classes (A, B, C and D). Physical characteristics (wetland area, mean depth), biological characteristics (species cover/abundance, presence and species richness), and chemical characteristics (ammonia, pH, sulphate, nitrogen and phosphate) were also recorded in the selected wetlands. Nineteen different species of dragonfly were recorded in this study. The study demonstrated that dragonflies are a promising bioindicator of wetland present ecological state as the dragonfly index was found to be closely correlated with WET- Health scores. Open water bodies within the selected wetlands were the focus of dragonfly sampling, as male dragonflies are territorial and they will patrol or be found around this habitat. Emergent vegetation dominated by sedges formed the focus of macroinvertebrate sampling in this study because greater numbers of macroinvertebrate families were found in this biotope in comparison to open water areas with no emergent vegetation. A total of 47 macroinvertebrate families were recorded in this study, but SASS5 scores based on macroinvetebrates showed no correlation with WET-Health scores. A total of 10 different frog species were recorded in this study. All the species were common frog species found in most parts of the country. Frog species richness and occurrence showed no correlation with WET- Health scores. A total of twenty samples of two meter radius were measured per wetland and sampled for plant species and estimation of cover-abundance of each species per sample. Over 50 different plant species were recorded in this study, and both species accumulation and species richness showed a degree of correlation with WET-Health scores. All the wetlands in class A had generally higher species accumulation rate and species richness compared to the other wetland classes. In addition to testing the congruency of four selected biological indicators with WET- Health, water quality was measured in all the wetlands. Wetlands in class A were associated with improved water quality as the water passes through the wetland. However, wetlands in class C and D did not show consistently improved water quality between the apex and the toe of these wetlands. In some cases the water quality deteriorated as it passed through wetlands in these two classes.
69

Challenges affecting the management of Thulamela wetlands: managers engagement with local communities use of wetlands

Mukhuwana, Onica 10 1900 (has links)
MENVSC / Department of Ecology and Resource Management / Wetlands are amongst the world’s most important ecosystems providing many direct and indirect benefits to local communities. The majority of South Africans residing in rural areas depends mostly on natural resources for their livelihood. However, wetlands in South Africa continue to be the most threatened ecosystems primarily due to unsustainable use and poor resource management. Additionally, the history of South Africa has been characterised by exclusion of local communities in the process of decision-making and general management of natural resources. The aim of the study was to investigate possible challenges affecting the management of Thulamela wetlands by assessing the level of interaction and conflicting interest amongst participating stakeholders, including role of wetlands on local communities for possibly improved management scenarios. The study used questionnaires, interviews and observations to capture data on the local communities and management stakeholders. Seven wetlands within Thulamela were selected as study areas and the study population was selected based on their specialised expertise, involvement, and closeness to wetlands. Data was analysed using SPSS, Microsoft Excel and also using thematic analysis in NVIVO. The results show that selected wetlands are highly beneficial in supporting the local communities. Based on the socio-economic and demographic characteristics (family size, age, gender, and employment status) measured, the study deduced that unemployment rate or low income of the respondents is the main contributor to an increase dependency on wetland utilization. Additionally, the results revealed that unregulated use and excessive agricultural practices such as cultivation and livestock grazing are common in all study areas, hence further degradation of these wetlands. One of the findings from the study was the destruction of wetlands through expansion of human settlement. The population increase in the areas was found to be major drivers of socio-economic challenges causing people to spread through and exploit wetlands. Consequently, human settlement along the wetland area has resulted in the extensive clearance of natural wetland vegetation. Furthermore, the results show that there is poor wetland information transfer to the local communities most likely due to none/or insufficient outreach programmes. The current management arrangements and structures for selected wetlands are not being practiced through the unequal representation amongst management stakeholders and poor inclusion of local communities in management processes. Additionally, there are currently no openly known active platforms provided upon which stakeholders are able to air their views on wetlands management issues. The findings further show differences in perceptions amongst wetlands users, non-users and management stakeholders. The management stakeholders have a relatively strong focus on livelihood and environmental problems, they regard rules and regulations on wetland use’ as a relatively central variable. On the other hand, the local communities are currently more concerned about the benefits they receive from the wetlands than the conservation of those systems. The study also revealed unequal representation amongst participating management stakeholders. The findings show poor interaction between the management stakeholders and the local communities; differences in perceptions amongst resource users, non-users and managers; exploitation of wetlands resources; poor wetlands information transfer. The results suggest that centralised top-down rules and regulations on wetland use are not sufficient for maintaining the wetland ecosystem and this poses a challenge to sustainable wetland management. Therefore, there is a need to develop shared understanding through bottom-up approaches to wetland management that are nested within national regulatory frameworks, ideally combined with awareness building and knowledge sharing on the ecological benefits and management of wetland. / NRF
70

Long-term Responses of Phalaris arundinacea and Columbia River Bottomland Vegetation to Managed Flooding

Farrelly, Tina Schantz 01 January 2012 (has links)
I sought to determine the effect of managed flooding on Phalaris arundinacea L. and other plant species distributions in a large wetland complex, Smith and Bybee Wetlands (SBW), in northwestern Oregon. Altered hydrology has reduced historically high spring flow and prematurely initiated the historic summer drying period at SBW. This alteration has increased the coverage of invasive plants (e.g., P. arundinacea) causing a decrease in native plant cover and thus degrading ecological functions. SBW managers installed a water control structure (WCS) between SBW and the Columbia Slough/River system to impound winter rainfall and thus approximate the ecological benefits that natural flooding provided as well as reduce the abundance of P. arundinacea. Prior researchers conducted intensive vegetation and hydrological monitoring in 2003 (during the season immediately before WCS installation) and 2004. I conducted similar analysis in the fifth and sixth years, 2008 and 2009, following establishment of the WCS. Both study years, I determined percent cover of all vegetation on transects established in 2003. The results, including 2004, as well as 2008 and 2009 showed a reduced cover of P. arundinacea in areas experiencing at least 0.6 meters of inundation and an increased cover of native plant communities when compared to the 2003 baseline data. Native Carex aperta Boott. cover increased 7-fold from 0.3% to 2.3%; Polygonum species cover increased from 20.0% to 52.6%; and Salix lucida Muhl. ssp. lasiandra (Benth.) E. Murray cover increased from 10.9% to 15.5% cover. P. arundinacea declined by over one-third from 44.4% to 28.1% cover following water management. Since hydrology management began, the native Polygonum species community replaced P. arundinacea as the dominant species in the emergent zone. The results of this study refined the suggested depth of inundation needed to reduce P. arundinacea cover in such lake-wetland complexes as SBW from 0.85 meters (based on 2004 study results) to 0.6 meters. Shannon Diversity decreased following water management. The findings of this study demonstrated that water management can enhance native bottomland communities, especially those comprised of obligate wetland species, and reduce P. arundinacea cover in areas experiencing at least 0.6 meters of inundation.

Page generated in 0.1095 seconds