• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Homogenization of some problems in hydrodynamic lubrication involving rough boundaries / Homogenisering av tunnfilmsflöden med ojämna randytor

Fabricius, John January 2011 (has links)
This thesis is devoted to the study of some homogenization problems with applications in lubrication theory. It consists of an introduction, five research papers (I–V) and a complementary appendix.Homogenization is a mathematical theory for studying differential equations with rapidly oscillating coefficients. Many important problems in physics with one or several microscopic scales give rise to this kind of equations, whence the need for methods that enable an efficient treatment of such problems. To this end several mathematical techniques have been devised. The main homogenization method used in this thesis is called multiscale convergence. It is a notion of weak convergence in  Lp spaces which is designed to take oscillations into account. In paper II we extend some previously obtained results in multiscale convergence that enable us to homogenize a nonlinear problem with a finite number of microscopic scales. The main idea in the proof is closely related to a decomposition of vector fields due to Hermann Weyl. The Weyl decomposition is further explored in paper III.Lubrication theory is devoted to the study of fluid flows in thin domains. More generally, tribology is the science of bodies in relative motion interacting through a mechanical contact. An important aspect of tribology is to explain the principles of friction, lubrication and wear. The mathematical foundations of lubrication theory are given by the Navier–Stokes equation which describes the motion of a viscous fluid. In thin domains several simplifications are possible, as shown in the introduction of this thesis. The resulting equation is named after Osborne Reynolds and is much simpler to analyze than the Navier--Stokes equation.The Reynolds equation is widely used by engineers today. For extremely thin films, it is well-known that the surface micro-topography is an important factor in hydrodynamic performance. Hence it is important to understand the influence of surface roughness with small characteristic wavelengths upon the solution of the Reynolds equation. Since the 1980s such problems have been increasingly studied by homogenization theory. The idea is to replace the original equation with a homogenized equation where the roughness effects are “averaged out”. One problem consists of finding an algorithm for computing the solution of the homogenized equation. Another problem consists of showing, on introducing the appropriate mathematical definitions, that the homogenized equation is the correct method of averaging. Papers I, II, IV and V investigate the effects of surface roughness by homogenization techniques in various situations of hydrodynamic lubrication. To compare the homogenized solution with the solution of the deterministic Reynolds equation, some numerical examples are also included. / Godkänd; 2011; 20110408 (johfab); DISPUTATION Ämnesområde: Matematik/Mathematics Opponent: Professor Guy Bayada, Institut National des Sciences Appliquées de Lyon (INSA-LYON), Lyon, France, Ordförande: Professor Lars-Erik Persson, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Tid: Tisdag den 7 juni 2011, kl 10.00 Plats: D2214/15, Luleå tekniska universitet

Page generated in 0.1046 seconds