• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biotype composition and virulence distribution of wheat curl mite in the North Central United States

Khalaf, Luaay Kahtan January 1900 (has links)
Doctor of Philosophy / Department of Entomology / C. Michael Smith / The wheat curl mite, Aceria tosichella (Keifer), is an important global pest of bread wheat, Triticum aestivum L. Chronic and often severe reductions of winter wheat yield due to A. tosichella infestations have occurred in North America and all other wheat-production areas for over five decades. Moreover, A. tosichella is the only vector which transmits the three most important wheat viruses in the Great Plains, which are Wheat Streak Mosaic Virus (WSMV), the most economically important wheat virus in North America; Triticum Mosaic Virus (TriMV) and High Plains Wheat Mosaic Virus (HPWMoV). Mite infestation alone causes stunted, chlorotic plants in susceptible wheat varieties. To date, mite resistant wheat cultivars have been the only sufficient method to control A. tosichella. The discovery of new genes for A. tosichella resistance and their introgression into wheat cultivars are essential steps to combat the development of new and/or different A. tosichella biotypes which can develop to overcome resistance genes. Both A. tosichella biotype 1 and 2 exist in U. S. Great Plains wheat producing areas. Elucidating and predicting A. tosichella population composition changes based on climatic and geographic variables is a key to continued effective mite management. Experiments were conducted to: 1) assess A. tosichella virulence in mites collected from 25 sample sites in six states to wheat plants harboring the Cmc2, Cmc3 and Cmc4 mite resistance genes and the Wsm2 WSMV resistance gene in 2014 and 2015, and determine the distribution of WSMV, TriMV and HPWMoV present in mites collected; 2) assess A. tosichella biotype composition using internal transcribed spacer 1 (ITS1) and cytochrome oxidase I (COI) polymorphisms; 3) use generalized additive modeling to capture the spatio-temporal factors contributing to the prevalence of A. tosichella biotypes 1 and 2; and 4) screen Kansas advanced breeding lines for resistance to A. tosichella biotypes 1 and 2. Results indicated that A. tosichella collected from 92% of the sample area were virulent to susceptible Jagger wheat plants with no Cmc resistance genes; that mites from 36% of the sample area were virulent to the Cmc2 gene, and that mites collected from 24% of sample area were virulent to Cmc3. Mite populations from only 8% of the sample sites exhibited virulence to plants containing Cmc4 + Wsm2 or Cmc4. The WSMV virus was predominant and present in 76% of all mites sampled. HPWMoV and TriMV were less apparent and present in 16% and 8% of all mites sampled, respectively. These results will enable breeders to increase the efficiency of wheat production by releasing wheat varieties containing A. tosichella resistance genes that contribute to reducing virus transmission. Results of spatio-temporal factor modeling provide new, more accurate information about the use of ground-cover and precipitation as key predictors of biotype prevalence and ratio. Experiments to determine if Kansas State University advanced breeding lines contain A. tosichella resistance found no resistance to biotype 1, resistance to biotype 2 in breeding lines AYN3-37 and AYN3-34; and moderate resistance to biotype 2 in breeding lines AYN2-28 and AYN2-36. The demonstrated correlation between reduced A. tosichella population size and avirulence; characterization and prediction of the A. tosichella biotype composition; and the identification of new sources of A. tosichella resistance in wheat can help entomologists and wheat breeders increase wheat production efficiency by releasing additional wheat cultivars containing A. tosichella resistance genes.
2

Interactions between the wheat curl mite, Aceria tosichella Keifer (Eriophyidae), and wheat streak mosaic virus and distribution of wheat curl mite biotypes in the field

Siriwetwiwat, Benjawan. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2006. / Title from title screen (site viewed May 23, 2007). PDF text: iv, 165 p. : ill. (some col.) ; 1.95Mb UMI publication number: AAT 3237062. Includes bibliographical references. Also available in microfilm and microfiche formats.
3

Epidemiological factors impacting the development of Wheat streak mosaic virus outbreaks

Webb, Christian A. January 1900 (has links)
Master of Science / Department of Plant Pathology / Erick D. DeWolf / Wheat streak mosaic (WSM) is a devastating disease of winter wheat (Triticum aestivum L.) in Kansas. Although WSM can cause heavy crop losses, the severity of regional and statewide losses varies by year and location. Wheat streak mosaic is caused primarily by the Wheat streak mosaic virus (WSMV) and is spread by the wheat curl mite, Aceria tosichella Keifer. To infect fall planted wheat, both the virus and mite require a living, grass host to survive the summer months. The first research objective was to determine the risk of different grass species to serve as a source of WSM. Published experiments and surveys were reviewed to determine the suitability of each host based on a set of criteria. An analysis of the reports from the reviewed literature found 39 species to host both pests. Categorical analysis of these observations suggested that well-studied grass species could be placed in four risk groupings with ten species at high risk of carrying both pests. Furthermore, results from controlled experimentation generally agrees with results from field survey results for both pests. The second objective was to determine the weather and cropping factors that are associated with regional epidemics of WSM in Kansas. Historic disease observations, weather summaries, soil moisture indices, and cropping statistics were collected from Kansas crop reporting districts from 1995-2013. Binary response variables (non-epidemic case vs epidemic cases) were developed from different thresholds of district losses attributed to WSM. Variables associated with WSM epidemics were identified by a combination of non-parametric correlation, classification trees, and logistic regression. This analysis indicates that the total acres of wheat planted per season was associated with the low frequency of epidemics in Eastern Kansas. Temperature during September appears to influence the yield losses caused by WSM. Wheat planting generally begins during September and continues through October in the state. Temperature during the winter months (December-February) was also identified as important with warm conditions favoring outbreaks of disease. Dry soil conditions in February was also associated with epidemics of WSM. Models combining these variables correctly classified 60 to 74% of the cases considered in this analysis.
4

Genetic characterization and utilization of multiple Aegilops tauschii derived pest resistance genes in wheat

Hall, Marla Dale January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Gina Brown-Guedira / Allan K. Fritz / Aegilops tauschii, the D-genome donor of modern wheat, has served as an important source of genetic variation in wheat breeding. The objective of this research was to characterize and utilize multiple Ae. tauschii-derived pest resistance genes contained in the germplasm KS96WGRC40. Two Ae. tauschii-derived genes, H23 and Cmc4, provide resistance to the Hessian fly (HF) and wheat curl mite (WCM), respectively. A linkage analysis of a testcross population estimated 32.67% recombination between H23 and Cmc4 on chromosome 6DS in wheat indicating that the two genes are not tightly linked as previous mapping reports show. Haplotype data of recombinant lines and physical mapping of linked microsatellite markers located Cmc4 distal to H23. Haplotype data indicated that both KS89WGRC04 and KS96WGRC40 have the distal portion of 6DS derived from Ae. tauschii. Microsatellite primer pairs BARC183 and GDM036 were more useful than the previously published linked markers in identifying lines carrying Cmc4 and H23, respectively. Through phenotypic selection and advancement within the testcross population, three TC1F2:4 lines were identified as homozygous resistant for H23 and Cmc4 and have the complete terminal segment of 6DS from Ae. tauschii. Two lines are more desirable than the original germplasm releases and can serve as a source of resistance to both HF and WCM in an elite background. A linkage analysis of a segregating recombinant inbred line population identified an Ae. tauschii-derived gene of major effect conferring resistance to Septoria leaf blotch (STB) and another Ae. tauschii-derived gene of major effect conferring resistance to soil-borne wheat mosaic virus (SBWMV) in the germplasm KS96WGRC40. The STB resistance gene in KS96WGRC40 is located in the distal 40% of the short arm of chromosome 7D flanked by microsatellite markers Xgwm044 and Xbarc126. Two previously reported STB genes, Stb4 and Stb5, have been mapped to 7DS in the same region as the STB resistance gene in KS96WGRC40. The uniqueness of the STB resistance genes on 7DS is questionable. The SBWMV resistance gene in KS96WGRC40 is located on chromosome 5DL linked to microsatellite marker Xcfd010. The SBWMV resistance gene within KS96WGRC40 was derived from TA2397 via KS95WGRC33.

Page generated in 0.1064 seconds