• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of a gene from breeding line WX93D180 conferring resistance to leaf rust (Puccinia triticina) in wheat

Hung, Hsiao-Yi 15 May 2009 (has links)
Wheat (Triticum aestivum L. em. Thell, 2n=6x=42, AABBDD) is subjected to significant yield losses by the endemic leaf rust pathogen, Puccinia triticina (Roberge ex Desmaz. F. sp. tritici). Breeding for resistance to this disease is a more appropriate option both environmentally and economically over fungicidal application. More than 57 leaf rust resistance genes in wheat have been identified and many of the resistance genes have been successfully introgressed into resistant cultivars, yet the continuous shifting of predominant races of P. triticina continues to be a challenge to breeders. Pyramiding multiple resistance genes into a single resistant cultivar is one of the preferred strategies to develop superior disease resistant cultivars. Efficient pyramiding requires the utilization of markers closely linked to the resistance genes. The objectives of this study were to characterize a novel source of resistance to leaf rust introgressed into the breeding line WX93D180-R-8-1, to determine its inheritance, map position, and linkage with molecular markers suitable for marker assisted selection. According to the pedigree of WX93D180, TX86D1310*3/TTCC417, the resistance in this breeding line should be derived from TTCC417 (Turkey tritici cereal collection), which was thought to be Triticum monococcum, which is a diploid species made up of only the A genome. However, our marker analyzes results indicated the resistance gene is located in the D genome and has the same location as the cloned leaf rust resistance gene Lr21. We verified the result in our population using primers from Lr21 and found the same segregation pattern with the phenotypic data (disease response). Therefore the pedigree is incorrect, TTCC417 was misidentified, or the resistance was not from TTCC417.
2

Characterization of a gene from breeding line WX93D180 conferring resistance to leaf rust (Puccinia triticina) in wheat

Hung, Hsiao-Yi 10 October 2008 (has links)
Wheat (Triticum aestivum L. em. Thell, 2n=6x=42, AABBDD) is subjected to significant yield losses by the endemic leaf rust pathogen, Puccinia triticina (Roberge ex Desmaz. F. sp. tritici). Breeding for resistance to this disease is a more appropriate option both environmentally and economically over fungicidal application. More than 57 leaf rust resistance genes in wheat have been identified and many of the resistance genes have been successfully introgressed into resistant cultivars, yet the continuous shifting of predominant races of P. triticina continues to be a challenge to breeders. Pyramiding multiple resistance genes into a single resistant cultivar is one of the preferred strategies to develop superior disease resistant cultivars. Efficient pyramiding requires the utilization of markers closely linked to the resistance genes. The objectives of this study were to characterize a novel source of resistance to leaf rust introgressed into the breeding line WX93D180-R-8-1, to determine its inheritance, map position, and linkage with molecular markers suitable for marker assisted selection. According to the pedigree of WX93D180, TX86D1310*3/TTCC417, the resistance in this breeding line should be derived from TTCC417 (Turkey tritici cereal collection), which was thought to be Triticum monococcum, which is a diploid species made up of only the A genome. However, our marker analyzes results indicated the resistance gene is located in the D genome and has the same location as the cloned leaf rust resistance gene Lr21. We verified the result in our population using primers from Lr21 and found the same segregation pattern with the phenotypic data (disease response). Therefore the pedigree is incorrect, TTCC417 was misidentified, or the resistance was not from TTCC417.

Page generated in 0.0704 seconds