• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 53
  • 53
  • 37
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

Abel, Martin Andreas 17 July 2012 (has links)
The absorption due to pairs of H₂ molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low mass main sequence stars, brown dwarf stars, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest. Astronomers are interested in the outer planets as they still contain primordal matter. Furthermore, recent observations by the Hubble space telescope (in operation since 1990) have revealed several thousand cool white dwarf stars with temperatures of several thousand Kelvin. It is surprising that none of them has temperatures lower than roughly 4000 K. This means that the white dwarf stars have not had enough time to cool down to the temperature of the cosmic background radiation. Astrophysicists believe that this information can be used for an alternative and more accurate method of cosmochronology. However, the emission spectra of cool white dwarf stars differ significantly from the expected blackbody spectra of their cores, largely due to collision-induced absorption by collisional complexes of residual hydrogen and helium in the stellar atmospheres. In order to model the radiative processes in these atmospheres, which have temperatures of several thousand kelvin, one needs accurate knowledge of the induced dipole and potential energy surfaces of the absorbing collisional complexes, such as H₂--H₂, H₂--He, and H₂--H. These come from quantum-chemical calculations, which, for the high temperatures and high photon energies under consideration in this work, need to take into account that the H₂ bonds can be stretched or compressed far from equilibrium length. Since no laboratory measurements for these high temperatures and photon energies exist, one has to undertake \textit{ab initio} calculations which take into account the high vibrational and rotational excitation of the involved hydrogen molecules. However, before one attempts to proceed to higher temperatures and photon energies where no laboratory measurements exist it is good to check that the formalism is correct and reproduces the results at temperatures and photon energies where laboratory measurements exist, that is, at and below room temperature and for photon energies up to about 1.5 eV. In this work a formalism is developed to compute the binary collision-induced absorption of simple molecular complexes up to temperatures of thousands of kelvin and photon energies up to 2.5 eV, properly taking into account vibrational and rotational dependencies of the induced dipole and potential energy surfaces. In order to make the computational effort feasible, the isotropic potenial approximation is employed. The formalism is applied to collisional complexes of H₂--H₂, D₂--D₂, H₂--He, D₂--He, T₂--He, and H₂--H, and compared with existing laboratory measurements. / text
22

Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

Hermes, James Joseph, Jr. 17 October 2013 (has links)
This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 M[subscript sun symbol]) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized. / text
23

Ensemble characteristics of the ZZ Ceti stars

Mukadam, Anjum Shagufta 28 August 2008 (has links)
Not available / text
24

Probing exotic physics with pulsating white dwarfs

Kim, Agnès 28 August 2008 (has links)
Not available / text
25

Probing exotic physics with pulsating white dwarfs

Kim, Agnès, 1975- 23 August 2011 (has links)
Not available / text
26

Post Common Envelope Pre-Cataclysmic and Cataclysmic Variable Binaries

Sing, David Kent January 2005 (has links)
Extensive photometric and spectroscopic observations have been obtained for the binary HS1136+6646, a newly formed post-common envelope binary system containing a hot ~DAO.5 primary and a highly irradiated secondary. H1136+6646 is the most extreme example yet of a class of short period systems containing a hot H-rich white dwarf with a K-M companion. An orbital period of 0.83607(3) days has been determined through the phasing of radial velocities, emission line equivalent widths, and photometric measurements spanning a range of 24 months. Radial velocity measurements yield an amplitude of K_WD = 69(2) km s^-1 for the white dwarf and K_K7V = 115 +/- 1 km s^-1 for the secondary star. Photometric measurements revealed a low amplitude modulation with a period of 234 minutes, associated with the rotation of the white dwarf. The white dwarf is estimated to have an effective temperature and gravity of ~100,000 K and log g~8.29 respectively, indicating the binary system is the second earliest post-CE objects known, having an age around 6.4x10^5 years. Indications are that the secondary star is overly luminous for its mass.I also present FUSE observations of the magnetic cataclysmic variable V405 Aurigae. Together with four other DQ Her type binaries, V405 Aur forms a small subclass of intermediate polars which are likely to evolve into low magnetic field strength polars. The FUSE spectrum exhibits broad O VI and C III emission-lines as well as a narrow O VI emission-line component which likely forms near the white dwarf surface in an optically thin gas. Radial velocity measurements restrict any orbital modulation to a very low amplitude (K_WD = 2.5(0.5) km s^-1) indicating that the binary system is at low inclination.Recent photometric and spectroscopic observations have revealed J0644+3344 to be a bright, deeply eclipsing cataclysmic variable binary with a 6.46488(24) hour period. Although the nature of the hot component is not presently clear, J0644+3344 is one of the brightest eclipsing nova-like cataclysmic variable system yet. As such, the possibility exists for an unambiguous determination of the masses and temperatures of both components in future studies.
27

A study of white dwarfs in the solar neighbourhood /

Kawka, Adela. January 2003 (has links)
Thesis (Ph.D.)--Murdoch University, 2003. / Thesis submitted to the Division of Science and Engineering. Bibliography: leaves 255-267.
28

Ensemble characteristics of the ZZ Ceti stars

Mukadam, Anjum Shagufta, Winget, Donald Earl, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: D.E. Winget. Vita. Includes bibliographical references. Also available from UMI.
29

Probing exotic physics with pulsating white dwarfs

Kim, Agnès, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
30

Identifying Cataclysmic Variables in Sparsely Sampled Pan-STARRS1 data

Jadhav, Yashashree Shirish 20 May 2014 (has links)
No description available.

Page generated in 0.0721 seconds