• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wideband Digital Filter-and-Sum Beamforming with Simultaneous Correction of Dispersive Cable and Antenna Effects

Liu, Qian 30 May 2012 (has links)
Optimum filter-and-sum beamforming is useful for array systems that suffer from spatially correlated noise and interference over large bandwidth. The set of finite impulse response (FIR) filter coefficients used to implement the optimum filter-and-sum beamformer are selected to optimize signal-to-noise ratio (SNR) and reduce interference from the certain directions. However, these array systems may also be vulnerable to dispersion caused by physical components such as antennas and cables, especially when the dispersion is unequal between sensors. The unequal responses can be equalized by using FIR filters. Although the problems of optimum-SNR beamforming, interference mitigation, and per-sensor dispersion have previously been individually investigated, their combined effects and strategies for mitigating their combined effects do not seem to have been considered. In this dissertation, combination strategies for optimum filter-and-sum beamforming and sensor dispersion correction are investigated. Our objective is to simultaneously implement optimum filter-and-sum beamforming and per-sensor dispersion correction using a single FIR filter per sensor. A contribution is to reduce overall filter length, possibly also resulting in a significant reduction in implementation complexity, power consumption, and cost. Expressions for optimum filter-and-sum beamforming weights and per-sensor dedispersion filter coefficients are derived. One solution is found via minimax optimization. To assess feasibility, the cost is analyzed in terms of filter length. These designs are considered in the context of LWA1, the first ``station'' of the Long Wavelength Array (LWA) radio telescope, consisting of 512 bowtie-type antennas and operating at frequencies between 10 MHz and 88 MHz. However, this work is applicable to a variety of systems which suffer from non-white spatial noise and directional interference and are vulnerable to sensor dispersion; e.g., sonar arrays, HF/VHF-band riometers, radar arrays, and other radio telescopes. / Ph. D.
2

Advanced techniques for improving radar performance

Shoukry, Mohammed Adel 03 December 2019 (has links)
Wideband beamforming have been widely used in modern radar systems. One of the powerful wideband beamforming techniques that is capable of achieving a high selectivity over a wide bandwidth is the nested array (NA) beamformer. Such a beamformer consists of nested antenna arrays, 2-D spatio-temporal filters, and multirate filterbanks. Speed of operation is bounded by the speed of the hardware implementation. This dissertation presents the use of a systematic methodology for design space exploration of the NA beamformer basic building blocks. The efficient systolic array design in terms of the highest possible clock speed of each block was selected for hardware implementation. The proposed systolic array designs and the conventional designs were implemented in FPGA hardware to verify their functionality and compare their erformance. The implementations results confirm that the proposed systolic array implementations are faster and requires less hardware resources than the published designs. The overall beamformer FPGA implementation is constructed based on the analysis of efficient systolic arrays designs of the beamformer building blocks. The implemented overall structure is then validated to ensure its proper operation. Further, the implementation performance is evaluated in terms of accuracy and error analysis in comparison to the MATLAB simulations. The new methodology is based on the systematic methodology to close the gap between the modern wideband radar I/O rates and the silicon operating speed. This new metodology is applied to the interpolator block as an example. The proposed methodology is simulated and tested using MATLAB object oriented programming (OOP) to ensure the proper operation. / Graduate / 2020-11-17

Page generated in 0.0657 seconds