• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of wild tomatoes endemic to the Galapagos Islands as a source for salinity tolerance traits

Pailles, Yveline 11 1900 (has links)
Salinity is a major concern in agriculture since it adversely affects plant growth, development, and yield. Domestication of crops exerted strong selective pressure and reduced their genetic diversity. Meanwhile, wild species continued to adapt to their environment becoming valuable sources of genetic variation, with the potential for enhancing modern crops performance in today’s changing climate. Some wild species are found in highly saline environments; remarkable examples are the endemic wild tomatoes from the Galapagos Islands, forming the Solanum cheesmaniae and Solanum galapagense species (hereafter termed Galapagos tomatoes). These wild tomatoes adapted to thrive in the coastal regions of the Galapagos Islands. The present work includes a thorough characterization of a collection of 67 accessions of Galapagos tomatoes obtained from the Tomato Genetics Resource Center (TGRC). Genotyping-by-sequencing (GBS) was performed to establish the population structure and genetic distance within the germplasm collection. Both species were genetically differentiated, and a substructure was found in S. cheesmaniae dividing the accessions in two groups based on their origin: eastern and western islands. Phenotypic studies were performed at the seedling stage, subjecting seedlings to 200 mM NaCl for 10 days. Various traits were recorded and analysed for their contribution to salinity tolerance, compared to control conditions. Large natural variation was found across the collection in terms of salt stress responses and different possible salt tolerant mechanisms were identified. Six accessions were selected for further work, based on their good performance under salinity. This experiment included scoring several plant growth and yield-related traits, as well as RNA sequencing (RNAseq) at the fruit-ripening stage, under three different NaCl concentrations. Accession LA0421 showed an increased yield of almost 50% in mild salinity (150 mM NaCl) compared to control conditions. The transcriptome data obtained could reveal the genes involved in the salt stress-related yield increase. The knowledge obtained so far will be useful for scientists and breeders to select accessions of interest based on recorded traits. It will allow the use of Galapagos tomatoes as genetic sources for salinity tolerance traits in commercial tomatoes, thereby contributing to feed and nourish the growing human population in the years to come.
2

Comparative Genomics of Gossypium spp. through GBS and Candidate Genes – Delving into the Controlling Factors behind Photoperiodic Flowering

Young, Carla Jo Logan 16 December 2013 (has links)
Cotton has been a world-wide economic staple in textiles and oil production. There has been a concerted effort for cotton improvement to increase yield and quality to compete with non-natural man-made fibers. Unfortunately, cultivated cotton has limited genetic diversity; therefore finding new marketable traits within cultivated cotton has reached a plateau. To alleviate this problem, traditional breeding programs have been attempting to incorporate practical traits from wild relatives into cultivated lines. This incorporation has presented a new problem: uncultivated cotton hampered by photoperiodism. Traditionally, due to differing floral times, wild and cultivated cotton species were unable to be bred together in many commercial production areas world-wide. This worldwide breeding problem has inhibited new trait incorporation. Before favorable traits from undomesticated cotton could be integrated into cultivated elite lines using marker-assisted selection breeding, the markers associated with photoperiod independence needed to be discovered. In order to increase information about this debilitating trait, we set out to identify informative markers associated with photoperiodism. This study was segmented into four areas. First, we reviewed the history of cotton to highlight current problems in production. Next, we explored cotton’s floral development through a study of floral transition candidate genes. The third area was an in-depth analysis of Phytochrome C (previously linked to photoperiod independence in other crops). In the final area of study, we used Genotype-By-Sequencing (GBS), in a segregating population, was used to determine photoperiod independence associated with single nucleotide polymorphisms (SNPs). In short, this research reported SNP differences in thirty-eight candidate gene homologs within the flowering time network, including photoreceptors, light dependent transcripts, circadian clock regulators, and floral integrators. Also, our research linked other discrete SNP differences, in addition to those contained within candidate genes, to photoperiodicity within cotton. In conclusion, the SNP markers that our study found may be used in future marker assisted selection (MAS) breeding schemas to incorporate desirable traits into elite lines without the introgression of photoperiod sensitivity.

Page generated in 0.0406 seconds