• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An assessment of mesoscale wind modelling techniques in complex terrain

Guo, Xuewen January 1989 (has links)
No description available.
2

Simulação dos ventos e tomografia de impulso: sinergia na avaliação do risco de queda de árvores / Wind modelling and impulse tomography: synergy in tree risk assessment

Garutti, Maria Carolina 23 November 2015 (has links)
Os efeitos ambientais negativos da urbanização podem ser mitigados pela presença de espaços verdes dentro e ao redor das cidades. Os elementos mais valiosos de tais áreas são reconhecidamente as árvores. Entretanto, existem também alguns riscos associados com a sua presença, os quais expressam a possibilidade de queda da árvore ou de seus galhos por perda de resistência biomecânica, resultando em perigo de morte e estragos a propriedades, bens e infraestrutura. Nesse sentido, a tomografia de impulso tem se mostrado como uma técnica bastante eficaz em detectar fragilidades biomecânicas no lenho. Considerando ainda que o vento é a principal força dinâmica atuante na copa das árvores, este estudo se propôs a (a) simular o comportamento dos ventos sobre a região do Parque Zoobotânico do Museu Paraense Emílio Goeldi, localizado em Belém-PA, durante quatro eventos de chuvas e ventos fortes usando o ENVI-met, (b) quantificar a perda de resistência biomecânica através da tomografia de impulso em 12 árvores presentes no referido parque e (c) identificar as árvores que possuem um maior risco de queda. Os modelos gerados pelo ENVI-met foram capazes de mostrar zonas de turbulência atuando sobre a copa das árvores tomografadas, e levando em conta a perda de resistência biomecânica, o Guajará foi identificado como apresentando o maior risco de queda entre todas as árvores estudadas. Concluiu-se que o ENVI-met prestou-se perfeitamente para a identificação de zonas de turbulência atuando na copa das árvores. Uma vez conhecidas essas turbulências e considerando a perda de resistência biomecânica acusada pela tomografia, ações de manejo pontuais podem ser propostas e executadas visando diminuir o risco de queda de árvores por ventos fortes em eventos futuros. / Negative environmental effects of urbanization can be mitigated by the presence of green spaces in and around cities. The most valuable elements of such green spaces are considered to be trees. Nonetheless, trees can pose some risks, which encompass the likelihood of mechanical failure of trunk or branches, causing injury to people or damaging buildings and properties. Accordingly, impulse tomography has proven to be a very effective technique in detecting biomechanical weaknesses in the wood. Considering wind as the main dynamic force acting on the tree crown, this study aimed to (a) simulate the behavior of winds over the region of the Goeldi Museum (located in Belém, Pará State, Brazil) during four events of heavy rain and strong winds using the ENVI-met software, (b) quantify the loss of biomechanical resistance for 12 trees located at the Museum and (c) identify trees with high possibility of failure. The models generated by ENVI-met were able to find areas of turbulence influencing the canopy of those trees. Together with the loss of biomechanical resistance, it was possible to identify the Guajará as having the greatest risk of failure among all the analyzed trees. It was concluded that ENVI-met represents a great tool in the identification of turbulence areas that influence trees. Once these areas are identified, and considering the loss of biomechanical resistance given by the impulse tomography, punctual management actions can be proposed and put into action for the sake of reducing risk of failure in future events of strong winds.
3

Time series methods for the simulation of wind speed fields across Great Britain

Edwards, Gruffudd January 2014 (has links)
This thesis presents the development of a time series model and associated algorithms capable of generating synthetic time-series datasets representing the hourly-averaged wind-speed field across the Country – as represented by a set of 20 points. This field is of interest as the energy resource available to wind generators connected to the Great Britain (GB) electricity networks. A wind power output dataset was also generated for an example distribution of wind generation capacities. The datasets generated are suitable for use in sequential Monte Carlo simulations of the GB electricity system – either the present system or future scenarios, potentially with full consideration of network constraints. Accurate representation of the spatio-temporal behaviours of renewable resources are an essential aspect of such simulations, along with their relationship to demand, with rarely occurring extreme events of particular interest. Therefore, variability in the resource occurring on all timescales – from turbulence to climatic shifts between decades must be represented. The synthetic data are time-stamped with time of the day and day of the year, so care was taken to ensure that all relevant deterministic and stochastic patterns are accurately reproduced. A major component of the research project was identification of the optimum level of complexity for various aspects of the model structure, and the associated computational expense of generating the series, particularly given the high dimensionality of the problem. The final choice of wind speed model was 2-factor-VGARMA-APARCH, along with several deterministic transformations.
4

Simulação dos ventos e tomografia de impulso: sinergia na avaliação do risco de queda de árvores / Wind modelling and impulse tomography: synergy in tree risk assessment

Maria Carolina Garutti 23 November 2015 (has links)
Os efeitos ambientais negativos da urbanização podem ser mitigados pela presença de espaços verdes dentro e ao redor das cidades. Os elementos mais valiosos de tais áreas são reconhecidamente as árvores. Entretanto, existem também alguns riscos associados com a sua presença, os quais expressam a possibilidade de queda da árvore ou de seus galhos por perda de resistência biomecânica, resultando em perigo de morte e estragos a propriedades, bens e infraestrutura. Nesse sentido, a tomografia de impulso tem se mostrado como uma técnica bastante eficaz em detectar fragilidades biomecânicas no lenho. Considerando ainda que o vento é a principal força dinâmica atuante na copa das árvores, este estudo se propôs a (a) simular o comportamento dos ventos sobre a região do Parque Zoobotânico do Museu Paraense Emílio Goeldi, localizado em Belém-PA, durante quatro eventos de chuvas e ventos fortes usando o ENVI-met, (b) quantificar a perda de resistência biomecânica através da tomografia de impulso em 12 árvores presentes no referido parque e (c) identificar as árvores que possuem um maior risco de queda. Os modelos gerados pelo ENVI-met foram capazes de mostrar zonas de turbulência atuando sobre a copa das árvores tomografadas, e levando em conta a perda de resistência biomecânica, o Guajará foi identificado como apresentando o maior risco de queda entre todas as árvores estudadas. Concluiu-se que o ENVI-met prestou-se perfeitamente para a identificação de zonas de turbulência atuando na copa das árvores. Uma vez conhecidas essas turbulências e considerando a perda de resistência biomecânica acusada pela tomografia, ações de manejo pontuais podem ser propostas e executadas visando diminuir o risco de queda de árvores por ventos fortes em eventos futuros. / Negative environmental effects of urbanization can be mitigated by the presence of green spaces in and around cities. The most valuable elements of such green spaces are considered to be trees. Nonetheless, trees can pose some risks, which encompass the likelihood of mechanical failure of trunk or branches, causing injury to people or damaging buildings and properties. Accordingly, impulse tomography has proven to be a very effective technique in detecting biomechanical weaknesses in the wood. Considering wind as the main dynamic force acting on the tree crown, this study aimed to (a) simulate the behavior of winds over the region of the Goeldi Museum (located in Belém, Pará State, Brazil) during four events of heavy rain and strong winds using the ENVI-met software, (b) quantify the loss of biomechanical resistance for 12 trees located at the Museum and (c) identify trees with high possibility of failure. The models generated by ENVI-met were able to find areas of turbulence influencing the canopy of those trees. Together with the loss of biomechanical resistance, it was possible to identify the Guajará as having the greatest risk of failure among all the analyzed trees. It was concluded that ENVI-met represents a great tool in the identification of turbulence areas that influence trees. Once these areas are identified, and considering the loss of biomechanical resistance given by the impulse tomography, punctual management actions can be proposed and put into action for the sake of reducing risk of failure in future events of strong winds.
5

Stochastic methods for unsteady aerodynamic analysis of wings and wind turbine blades

Fluck, Manuel 25 April 2017 (has links)
Advancing towards `better' wind turbine designs engineers face two central challenges: first, current aerodynamic models (based on Blade Element Momentum theory) are inherently limited to comparatively simple designs of flat rotors with straight blades. However, such designs present only a subset of possible designs. Better concepts could be coning rotors, swept or kinked blades, or blade tip modifications. To be able to extend future turbine optimization to these new concepts a different kind of aerodynamic model is needed. Second, it is difficult to include long term loads (life time extreme and fatigue loads) directly into the wind turbine design optimization. This is because with current methods the assessment of long term loads is computationally very expensive -- often too expensive for optimization. This denies the optimizer the possibility to fully explore the effects of design changes on important life time loads, and one might settle with a sub-optimal design. In this dissertation we present work addressing these two challenges, looking at wing aerodynamics in general and focusing on wind turbine loads in particular. We adopt a Lagrangian vortex model to analyze bird wings. Equipped with distinct tip feathers, these wings present very complex lifting surfaces with winglets, stacked in sweep and dihedral. Very good agreement between experimental and numerical results is found, and thus we confirm that a vortex model is actually capable of analyzing complex new wing and rotor blade geometries. Next stochastic methods are derived to deal with the time and space coupled unsteady aerodynamic equations. In contrast to deterministic models, which repeatedly analyze the loads for different input samples to eventually estimate life time load statistics, the new stochastic models provide a continuous process to assess life time loads in a stochastic context -- starting from a stochastic wind field input through to a stochastic solution for the load output. Hence, these new models allow obtaining life time loads much faster than from the deterministic approach, which will eventually make life time loads accessible to a future stochastic wind turbine optimization algorithm. While common stochastic techniques are concerned with random parameters or boundary conditions (constant in time), a stochastic treatment of turbulent wind inflow requires a technique capable to handle a random field. The step from a random parameter to a random field is not trivial, and hence the new stochastic methods are introduced in three stages. First the bird wing model from above is simplified to a one element wing/ blade model, and the previously deterministic solution is substituted with a stochastic solution for a one-point wind speed time series (a random process). Second, the wind inflow is extended to an $n$-point correlated random wind field and the aerodynamic model is extended accordingly. To complete this step a new kind of wind model is introduced, requiring significantly fewer random variables than previous models. Finally, the stochastic method is applied to wind turbine aerodynamics (for now based on Blade Element Momentum theory) to analyze rotor thrust, torque, and power. Throughout all these steps the stochastic results are compared to result statistics obtained via Monte Carlo analysis from unsteady reference models solved in the conventional deterministic framework. Thus it is verified that the stochastic results actually reproduce the deterministic benchmark. Moreover, a considerable speed-up of the calculations is found (for example by a factor 20 for calculating blade thrust load probability distributions). Results from this research provide a means to much more quickly analyze life time loads and an aerodynamic model to be used a new wind turbine optimization framework, capable of analyzing new geometries, and actually optimizing wind turbine blades with life time loads in mind. However, to limit the scope of this work, we only present the aerodynamic models here and will not proceed to turbine optimization itself, which is left for future work. / Graduate / 0538 / 0548 / mfluck@uvic.ca

Page generated in 0.0688 seconds