1 |
Flight performance, echolocation and prey capture behaviour in trawling Myotis batsBritton, Adam Robert Corden January 1996 (has links)
No description available.
|
2 |
Phenotypic Plasticity and Population-level Variation in Thermal Physiology of the Bumblebee 'Bombus impatiens'Rivière, Bénédicte Aurélie 17 April 2012 (has links)
Temperature variation affects most biological parameters from the molecular level to community structure and dynamics. Current studies on thermal biology assess how populations vary in response to environmental temperature, which can help determine how populations differentially respond to climate change. To date, temperature fluctuation effects on endothermic poikilotherms such as the common eastern bumblebee (Bombus impatiens) are unknown even though bumblebees are the most important natural pollinators in North America. A cold-acclimation experiment with B. impatiens colonies revealed individuals acclimated to 5°C or 10°C at night did not differ in resting metabolic rate, flight metabolic rate, wingbeat frequency, or morphological measurements, compared to the control group. Moreover, an infrared camera showed that all colonies maintained maximum nest temperature consistently above 36.8°C. A latitudinal sampling of flight metabolic rate and morphological measurements of B. impatiens from four locations spanning Ontario (N 45°; W 75°) to North Carolina (N 34°; W 77°) indicated no latitudinal trend in the measured variables. This study shows that bumblebees are well equipped to face a wide range of environmental temperatures, both in the short term and long term, and can use a combination of behavioural and physiological mechanisms to regulate body and nest temperatures. These results are reassuring on the direct effects of climate change on bumblebee ecology, but further studies on the indirect effect of temperature variation on North American bumblebees are required to predict future ecosystem dynamics.
|
3 |
Neuromuscular Control of Aerodynamic Power Output via Changes in Wingbeat Kinematics in the Flight Muscles of Ruby-throated Hummingbirds (Archilochus colubris)Mahalingam, Sajeni 22 November 2012 (has links)
While producing the highest power output of any vertebrate, hovering hummingbirds must also precisely modulate the activity of their primary flight muscles to vary wingbeat kinematics and modulate lift production. By examining how electromyograms (EMGs) and wingbeat kinematics of hummingbirds change in response to varying aerodynamic power requirements during load lifting trials and air density reduction trials, we can better understand how aerodynamic power output is modulated via neuromuscular control. During both treatments increased lift was achieved through increased stroke amplitude, but wingbeat frequency only increased during air density reduction trials. These changes in wingbeat kinematics were matched by increased EMG intensities as aerodynamic power output requirements increased. Despite the relative symmetry of the hovering downstroke and upstroke, the timing of activation and number of spikes per EMG burst were consistently different in the supracoracoideus compared to the pectoralis, likely reflecting differences in muscle morphology.
|
4 |
Neuromuscular Control of Aerodynamic Power Output via Changes in Wingbeat Kinematics in the Flight Muscles of Ruby-throated Hummingbirds (Archilochus colubris)Mahalingam, Sajeni 22 November 2012 (has links)
While producing the highest power output of any vertebrate, hovering hummingbirds must also precisely modulate the activity of their primary flight muscles to vary wingbeat kinematics and modulate lift production. By examining how electromyograms (EMGs) and wingbeat kinematics of hummingbirds change in response to varying aerodynamic power requirements during load lifting trials and air density reduction trials, we can better understand how aerodynamic power output is modulated via neuromuscular control. During both treatments increased lift was achieved through increased stroke amplitude, but wingbeat frequency only increased during air density reduction trials. These changes in wingbeat kinematics were matched by increased EMG intensities as aerodynamic power output requirements increased. Despite the relative symmetry of the hovering downstroke and upstroke, the timing of activation and number of spikes per EMG burst were consistently different in the supracoracoideus compared to the pectoralis, likely reflecting differences in muscle morphology.
|
5 |
Phenotypic Plasticity and Population-level Variation in Thermal Physiology of the Bumblebee 'Bombus impatiens'Rivière, Bénédicte Aurélie 17 April 2012 (has links)
Temperature variation affects most biological parameters from the molecular level to community structure and dynamics. Current studies on thermal biology assess how populations vary in response to environmental temperature, which can help determine how populations differentially respond to climate change. To date, temperature fluctuation effects on endothermic poikilotherms such as the common eastern bumblebee (Bombus impatiens) are unknown even though bumblebees are the most important natural pollinators in North America. A cold-acclimation experiment with B. impatiens colonies revealed individuals acclimated to 5°C or 10°C at night did not differ in resting metabolic rate, flight metabolic rate, wingbeat frequency, or morphological measurements, compared to the control group. Moreover, an infrared camera showed that all colonies maintained maximum nest temperature consistently above 36.8°C. A latitudinal sampling of flight metabolic rate and morphological measurements of B. impatiens from four locations spanning Ontario (N 45°; W 75°) to North Carolina (N 34°; W 77°) indicated no latitudinal trend in the measured variables. This study shows that bumblebees are well equipped to face a wide range of environmental temperatures, both in the short term and long term, and can use a combination of behavioural and physiological mechanisms to regulate body and nest temperatures. These results are reassuring on the direct effects of climate change on bumblebee ecology, but further studies on the indirect effect of temperature variation on North American bumblebees are required to predict future ecosystem dynamics.
|
6 |
Phenotypic Plasticity and Population-level Variation in Thermal Physiology of the Bumblebee 'Bombus impatiens'Rivière, Bénédicte Aurélie January 2012 (has links)
Temperature variation affects most biological parameters from the molecular level to community structure and dynamics. Current studies on thermal biology assess how populations vary in response to environmental temperature, which can help determine how populations differentially respond to climate change. To date, temperature fluctuation effects on endothermic poikilotherms such as the common eastern bumblebee (Bombus impatiens) are unknown even though bumblebees are the most important natural pollinators in North America. A cold-acclimation experiment with B. impatiens colonies revealed individuals acclimated to 5°C or 10°C at night did not differ in resting metabolic rate, flight metabolic rate, wingbeat frequency, or morphological measurements, compared to the control group. Moreover, an infrared camera showed that all colonies maintained maximum nest temperature consistently above 36.8°C. A latitudinal sampling of flight metabolic rate and morphological measurements of B. impatiens from four locations spanning Ontario (N 45°; W 75°) to North Carolina (N 34°; W 77°) indicated no latitudinal trend in the measured variables. This study shows that bumblebees are well equipped to face a wide range of environmental temperatures, both in the short term and long term, and can use a combination of behavioural and physiological mechanisms to regulate body and nest temperatures. These results are reassuring on the direct effects of climate change on bumblebee ecology, but further studies on the indirect effect of temperature variation on North American bumblebees are required to predict future ecosystem dynamics.
|
7 |
An investigation of female house mosquito (Culex pipiens) photo responses to male flashing wingbeat frequencyStec, Helen 28 April 2022 (has links)
No description available.
|
Page generated in 0.0677 seconds