• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers

Andersson, Stefan January 2006 (has links)
The wireless market is developing very fast today with a steadily increasing number of users all around the world. An increasing number of users and the constant need for higher and higher data rates have led to an increasing number of emerging wireless communication standards. As a result there is a huge demand for flexible and low-cost radio architectures for portable applications. Moving towards multistandard radio, a high level of integration becomes a necessity and can only be accomplished by new improved radio architectures and full utilization of technology scaling. Modern nanometer CMOS technologies have the required performance for making high-performance RF circuits together with advanced digital signal processing. This is necessary for the development of low-cost highly integrated multistandard radios. The ultimate solution for the future is a software-defined radio, where a single hardware is used that can be reconfigured by software to handle any standard. Direct analog-to-digital conversion could be used for that purpose, but is not yet feasible due to the extremely tough requirements that put on the analog-to-digital converter (ADC). Meanwhile, the goal is to create radios that are as flexible as possible with today’s technology. The key to success is to have an RF front-end architecture that is flexible enough without putting too tough requirements on the ADC. One of the key components in such a radio front-end is a multiband multistandard low-noise amplifier (LNA). The LNA must be capable of handling several carrier frequencies within a large bandwidth. Therefore it is not possible to optimize the circuit performance for just one frequency band as can be done for a single application LNA. Two different circuit topologies that are suitable for multiband multistandard LNAs have been investigated, implemented, and measured. Those two LNA topologies are: (i) wideband LNAs that cover all the frequency bands of interest (ii) tunable narrowband LNAs that are tunable over a wide range of frequency bands. Before analog-to-digital conversion the RF signal has to be downconverted to a frequency manageable by the analog-to-digital converter. Recently the concept of direct sampling of the RF signal and discrete-time signal processing before analog-to-digital conversion has drawn a lot of attention. Today’s CMOS technologies demonstrate very high speeds, making the RF-sampling technique appealing in a context of multistandard operation at GHz frequencies. In this thesis the concept of RF sampling and decimation is used to implement a flexible RF front-end, where the RF signal is sampled and downconverted to baseband frequency. A discrete-time switched-capacitor filter is used for filtering and decimation in order to decrease the sample rate from a value close to the carrier frequency to a value suitable for analog-to-digital conversion. To demonstrate the feasibility of this approach an RF-sampling front-end primarily intended for WLAN has been implemented in a 0.13 μm CMOS process.
2

Power Scaling Mechanism for Low Power Wireless Receivers

Ghosal, Kaushik January 2015 (has links) (PDF)
LOW power operation for wireless radio receivers has been gaining importance lately on account of the recent spurt of growth in the usage of ubiquitous embedded mobile devices. These devices are becoming relevant in all domains of human influence. In most cases battery life for these devices continue to be an us-age bottleneck as energy storage techniques have not kept pace with the growing demand of such mobile computing devices. Many applications of these radios have limitations on recharge cycle, i.e. the radio needs to last out of a battery for long duration. This will specially be true for sensor network applications and for im-plantable medical devices. The search for low power wireless receivers has become quite advanced with a plethora of techniques, ranging from circuit to architecture to system level approaches being formulated as part of standard design procedures. However the next level of optimization towards “Smart” receiver systems has been gaining credence and may prove to be the next challenge in receiver design and de-velopment. We aim to proceed further on this journey by proposing Power Scalable Wireless Receivers (PSRX) which have the capability to respond to instantaneous performance requirements to lower power even further. Traditionally low power receivers were designed for worst-case input conditions, namely low signal and high interference, leading to large dynamic range of operation which directly im-pacts the power consumption. We propose to take into account the variation in performance required out of the receiver, under varying Signal and Interference conditions, to trade-off power. We have analyzed, designed and implemented a Power Scalable Receiver tar-geted towards low data-rate receivers which can work for Zigbee or Bluetooth Low Energy (BLE) type standards. Each block of such a receiver system was evaluated for performance-power trade-offs leading to identification of tuning/control knobs at the circuit architecture level of the receiver blocks. Then we developed an usage algorithm for finding power optimal operational settings for the tuning knobs, while guaranteeing receiver reception performance in terms of Bit-Error-Rate (BER). We have proposed and demonstrated a novel signal measurement system to gen-erate digitized estimates of signal and interference strength in the received signal, called Received Signal Quality Indicator (RSQI). We achieve a RSQI average energy consumption of 8.1nJ with a peak energy consumption of 9.4nJ which is quite low compared to the packet reception energy consumption for low power receivers, and will be substantially lower than the energy savings which will be achieved from a power scalable receiver employing a RSQI. The full PSRX system was fabricated in UMC 130nm RF-CMOS process to test out our concepts and to formally quantify the power savings achieved by following the design methodology. The test chip occupied an area of 2.7mm2 with a peak power consumption of 5.5mW for the receiver chain and 18mW for the complete PSRX. We were able to meet the receiver performance requirements for Zigbee standard and achieved about 5X power savings for the range of input condition variations.
3

Integrated realizations of reconfigurable low pass and band pass filters for wide band multi-mode receivers

Csipkes, Gabor-Laszlo 16 February 2006 (has links) (PDF)
With the explosive development of wireless communication systems the specifications of the supporting hardware platforms have become more and more demanding. According to the long term goals of the industry, future communications systems should integrate a wide variety of standards. This leads to the idea of software defined radio, implemented on fully reconfigurable hardware.Among other reconfigurable hardware blocks, suitable for the software radio concept, an outstanding importance belongs to the reconfigurable filters that are responsible for the selectivity of the system. The problematic of filtering is strictly connected to the architecture chosen for a multi-mode receiver realization. According to the chosen architecture, the filters can exhibit low pass or band pass frequency responses.The idea of reconfigurable frequency parameters has been introduced since the beginning of modern filtering applications due to the required precision of the frequency response. However, the reconfiguration of the parameters was usually done in a limited range around ideal values. The purpose of the presented research is to transform the classical filter structures with simple self-correction into fully reconfigurable filters over a wide range of frequencies. The ideal variation of the frequency parameters is continuous and consequently difficult to implement in real circuits. Therefore, it is usually sufficient to use a discrete programming template with reasonably small steps.There are several methods to implement variable frequency parameters. The most often used programming templates employ resistor and capacitor arrays, switched according to a given code. The low pass filter implementation proposed in this work uses a special switching template, optimized for a quasi-linear frequency variation over logarithmic axes. The template also includes the possibility to compensate errors caused by component tolerances and temperature. Another important topic concerns the implementation of programmable band pass filters, suitable for IF sampling receivers. The discussion is centered on the feasibility and the flexibility of different band pass filter architectures. Due to the high frequency requirements, the emphasis lays on filters that employ transconductance amplifiers and capacitors. / Die rasch fortschreitende Entwicklung drahtloser Kommunikationssysteme führt zu immer anspruchsvolleren Spezifikationen der diese Systeme unterstützenden Hardwareplattformen. Zukünftige Kommunikationssysteme sollen übereinstimmend mit den längerfristigen Zielen der Industrie verschiedene Standards integrieren. Dies führt zu der Idee von vollständig rekonfigurierbarer Hardware, welche mittels Software gesteuert wird.Inmitten anderer rekonfigurierbarer Hardwareblöcke, die für das Software Radio Konzept geeignet sind, besitzen die steuerbaren Filter, welche wesentlichen Einfluss auf die Selektivität des Systems haben, eine enorme Bedeutung. Die Filterproblematik ist eng mit der gewählten Architektur der standardübergreifenden Empfängerrealisierung verknüpft. Die Filter können entsprechend der ausgesuchten Architektur Tiefpass- oder Bandpasscharakter annehmen.Die Idee rekonfigurierbarer Frequenzparameter wurde bereits mit Beginn moderner Filteranwendungen auf Grund geforderter Frequenzganggenauigkeit umgesetzt. Jedoch wurde die Parameterrekonfiguration üblicherweise nur in einem begrenzten Bereich um die Idealwerte herum vorgenommen. Das Ziel der vorgestellten Forschungsarbeit ist es, diese klassischen Filterstrukturen mit einfacher Selbstkorrektur in über große Frequenzbereiche voll rekonfigurierbare Filter zu transformieren. Idealerweise werden die Frequenzparameter kontinuierlich variiert weswegen sich die Implementierung in reellen Schaltkreisen als schwierig erweist. Deshalb ist es üblicherweise ausreichend, ein diskretes Steuerschema mit kleinen Schrittweiten zu verwenden.Es gibt verschiedene Methoden, variable Frequenzparameter zu implementieren. Die meisten Schemata verwenden Widerstands- und Kondensatorfelder, die entsprechend eines Kodes geschaltet werden. Die in dieser Arbeit vorgestellte Implementierung eines Tiefpassfilters nutzt ein spezielles Umschaltschema, welches für die quasi-lineare Frequenzvariation bei Darstellung über logarithmischen Axen optimiert wurde. Es beinhaltet weiterhin die Möglichkeit, Fehler zu kompensieren, die durch Bauelementtoleranzen und Temperaturschwankungen hervorgerufen werden.Ein weiteres interessantes Thema betrifft die Implementierung steuerbarer Bandpassfilter, die für Empfänger mit Zwischenfrequenzabtastung geeignet sind. Die Betrachtung beschränkt sich hierbei auf die Durchführbarkeit und Flexibilität verschiedener Bandpassfilterarchitekturen. Auf Grund hoher Frequenzanforderungen liegt der Schwerpunkt auf Filtern, die auf Transkonduktanzverstärkern und Kondensatoren basieren.
4

Integrated realizations of reconfigurable low pass and band pass filters for wide band multi-mode receivers

Csipkes, Gabor-Laszlo 26 October 2005 (has links)
With the explosive development of wireless communication systems the specifications of the supporting hardware platforms have become more and more demanding. According to the long term goals of the industry, future communications systems should integrate a wide variety of standards. This leads to the idea of software defined radio, implemented on fully reconfigurable hardware.Among other reconfigurable hardware blocks, suitable for the software radio concept, an outstanding importance belongs to the reconfigurable filters that are responsible for the selectivity of the system. The problematic of filtering is strictly connected to the architecture chosen for a multi-mode receiver realization. According to the chosen architecture, the filters can exhibit low pass or band pass frequency responses.The idea of reconfigurable frequency parameters has been introduced since the beginning of modern filtering applications due to the required precision of the frequency response. However, the reconfiguration of the parameters was usually done in a limited range around ideal values. The purpose of the presented research is to transform the classical filter structures with simple self-correction into fully reconfigurable filters over a wide range of frequencies. The ideal variation of the frequency parameters is continuous and consequently difficult to implement in real circuits. Therefore, it is usually sufficient to use a discrete programming template with reasonably small steps.There are several methods to implement variable frequency parameters. The most often used programming templates employ resistor and capacitor arrays, switched according to a given code. The low pass filter implementation proposed in this work uses a special switching template, optimized for a quasi-linear frequency variation over logarithmic axes. The template also includes the possibility to compensate errors caused by component tolerances and temperature. Another important topic concerns the implementation of programmable band pass filters, suitable for IF sampling receivers. The discussion is centered on the feasibility and the flexibility of different band pass filter architectures. Due to the high frequency requirements, the emphasis lays on filters that employ transconductance amplifiers and capacitors. / Die rasch fortschreitende Entwicklung drahtloser Kommunikationssysteme führt zu immer anspruchsvolleren Spezifikationen der diese Systeme unterstützenden Hardwareplattformen. Zukünftige Kommunikationssysteme sollen übereinstimmend mit den längerfristigen Zielen der Industrie verschiedene Standards integrieren. Dies führt zu der Idee von vollständig rekonfigurierbarer Hardware, welche mittels Software gesteuert wird.Inmitten anderer rekonfigurierbarer Hardwareblöcke, die für das Software Radio Konzept geeignet sind, besitzen die steuerbaren Filter, welche wesentlichen Einfluss auf die Selektivität des Systems haben, eine enorme Bedeutung. Die Filterproblematik ist eng mit der gewählten Architektur der standardübergreifenden Empfängerrealisierung verknüpft. Die Filter können entsprechend der ausgesuchten Architektur Tiefpass- oder Bandpasscharakter annehmen.Die Idee rekonfigurierbarer Frequenzparameter wurde bereits mit Beginn moderner Filteranwendungen auf Grund geforderter Frequenzganggenauigkeit umgesetzt. Jedoch wurde die Parameterrekonfiguration üblicherweise nur in einem begrenzten Bereich um die Idealwerte herum vorgenommen. Das Ziel der vorgestellten Forschungsarbeit ist es, diese klassischen Filterstrukturen mit einfacher Selbstkorrektur in über große Frequenzbereiche voll rekonfigurierbare Filter zu transformieren. Idealerweise werden die Frequenzparameter kontinuierlich variiert weswegen sich die Implementierung in reellen Schaltkreisen als schwierig erweist. Deshalb ist es üblicherweise ausreichend, ein diskretes Steuerschema mit kleinen Schrittweiten zu verwenden.Es gibt verschiedene Methoden, variable Frequenzparameter zu implementieren. Die meisten Schemata verwenden Widerstands- und Kondensatorfelder, die entsprechend eines Kodes geschaltet werden. Die in dieser Arbeit vorgestellte Implementierung eines Tiefpassfilters nutzt ein spezielles Umschaltschema, welches für die quasi-lineare Frequenzvariation bei Darstellung über logarithmischen Axen optimiert wurde. Es beinhaltet weiterhin die Möglichkeit, Fehler zu kompensieren, die durch Bauelementtoleranzen und Temperaturschwankungen hervorgerufen werden.Ein weiteres interessantes Thema betrifft die Implementierung steuerbarer Bandpassfilter, die für Empfänger mit Zwischenfrequenzabtastung geeignet sind. Die Betrachtung beschränkt sich hierbei auf die Durchführbarkeit und Flexibilität verschiedener Bandpassfilterarchitekturen. Auf Grund hoher Frequenzanforderungen liegt der Schwerpunkt auf Filtern, die auf Transkonduktanzverstärkern und Kondensatoren basieren.

Page generated in 0.074 seconds