• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NON-INTRUSIVE WIRELESS SENSING WITH MACHINE LEARNING

YUCHENG XIE (16558152) 30 August 2023 (has links)
<p>This dissertation explores the world of non-intrusive wireless sensing for diet and fitness activity monitoring, in addition to assessing security risks in human activity recognition (HAR). It delves into the use of WiFi and millimeter wave (mmWave) signals for monitoring eating behaviors, discerning intricate eating activities, and observing fitness movements. The proposed systems harness variations in wireless signal propagation to record human behavior while providing exhaustive details on dietary and exercise habits. Significant contributions encompass unsupervised learning methodologies for detecting dietary and fitness activities, implementing soft-decision and deep neural networks for assorted activity recognition, constructing tiny motion mechanisms for subtle mouth muscle movement recovery, employing space-time-velocity features for multi-person tracking, as well as utilizing generative adversarial networks and domain adaptation structures to enable less cumbersome training efforts and cross-domain deployments. A series of comprehensive tests validate the efficacy and precision of the proposed non-intrusive wireless sensing systems. Additionally, the dissertation probes the security vulnerabilities in mmWave-based HAR systems and puts forth various sophisticated adversarial attacks - targeted, untargeted, universal, and black-box. It designs adversarial perturbations aiming to deceive the HAR models whilst striving to minimize detectability. The research offers powerful insights into issues and efficient solutions relative to non-intrusive sensing tasks and security challenges linked with wireless sensing technologies.</p>

Page generated in 0.1117 seconds