• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wireless Sensor Network Systems in Harsh Environments and Antenna Measurement Techniques

Grudén, Mathias January 2014 (has links)
Wireless sensor network (WSN) has become a hot topic lately. By using WSN things that previously were difficult or impossible to measure has now become available. One of the main reasons using WSN for monitoring is to save money by cost optimization and/or increase safety by letting the user knowing the physical status of the monitored structure. This thesis considers four main topics, empirical testing of WSN in harsh environments, antenna designs, antenna measurements and radio environment emulation. The WSN has been tested in train environment for monitoring of ball bearings and inside jet engines to monitor strain of blades and temperatures. In total, two investigations have been performed aboard the train wagon and one in the jet engine. The trials have been successful and provide knowledge of the difficulties with practical WSN applications. The key issues for WSN are robust communication, energy management (including scavenging) and physical robustness. For the applications of WSN in harsh environments antennas has to be designed. In the thesis, two antennas has been designed, one for train environment and one for the receiver in the jet engine. In the train environment, a more isotropic radiation pattern is preferable; hence a small dual layered patch antenna is designed. The antenna is at the limit of being electrically small; hence slightly lower radiation efficiency is measured. For the WSN in the jet engine, a directive patch array is designed on an ultra-thin and flexible substrate. The thin substrate of the antenna causes rather lower radiation efficiency. But the antenna fulfils the requirements of being conformal and directive. In reverberation chambers are used to measure antennas, but there are difficulties to provide a realistic radio environment, for example outdoor or on-body. In this thesis, a large reverberation chamber is designed and verified. It enables measurement between 400 MHz and 3 GHz. Also, a sample selection method is designed to provide a post processing possibilities to emulate the radio environment inside the chamber. The method is to select samples from a data set that corresponds to a desired probability density function. The method presented in this thesis is extremely fast but the implementation of the method is left for future research. / WISENET / WiseJet
2

Wireless Interface Technologies for Sensor Networks

Jobs, Magnus January 2015 (has links)
The main focus of the work presented in this thesis concerns the development and improvement of Wireless Sensor Networks (WSNs) as well as Wireless Body Area Networks (WBANs). WSN consist of interlinked, wireless devices (nodes) capable of relaying data wirelessly between the nodes. The applications of WSNs are very broad and cover both wireless fitness monitoring systems such as pulse watches or wireless temperature monitoring of buildings, among others. The topics investigated in the work presented within this thesis covers antenna design, wireless propagation environment evaluation and modeling, adaptive antenna control and wireless nodes system design and evaluation. In order to provide an end-user suitable solution for wireless nodes the devices require both small form factor and good performance in order to be competitive on the marked and thus the main part of this thesis focuses on techniques developed and data collected to help achieve these goals.  Several different prototype systems have been developed which have been used to measure data by the Swedish Defence Research Agency (FOI), GKN Aerospace Sweden AB, the Swedish Transport Administration. The system developed with GKN Aerospace was used to do real-time test measurements inside a running RM12 jet engine and required a substantial amount of measurements, environmental modeling and system validation in order to properly design a wireless system suitable for the harsh and fast fading environment inside a jet engine. For FOI improvements were made on a wearable wireless body area network initially developed during the authors master thesis work. Refinements included work on new generation wireless nodes, antenna packaging and node-supported diversity techniques. Work and papers regarding the design of different types of antennas suitable for wireless nodes are presented. The primary constraints on the presented antennas are the limited electrical size. The types of antennas developed include electrically small helix antennas manufactured both on stretchable substrates consisting of a PDMS substrate with Galinstan as the liquid metal conductors, screen printed silver ink for helix antennas and conformal dual patch antennas for wireless sensor nodes. Other standard type antennas are included on the wireless sensors as well.

Page generated in 0.0333 seconds