• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prozesse der Urteilsrevision : kognitive Modellierung der Verarbeitung unsicheren Wissens /

Plach, Marcus. January 1998 (has links)
Universiẗat, Diss., 1997--Saarbrücken.
2

Contractions Based on Optimal Repairs

Baader, Franz, Wassermann, Renata 22 July 2024 (has links)
Removing unwanted consequences from a knowledge base has been investigated in belief change under the name contraction and is called repair in ontology engineering. Simple repair and contraction approaches based on removing statements from the knowledge base (respectively called belief base contractions and classical repairs) have the disadvantage that they are syntax-dependent and may remove more consequences than necessary. Belief set contractions do not have these problems, but may result in belief sets that have no finite representation if one works with logics that are not fragments of propositional logic. Similarly, optimal repairs, which are syntax-independent and maximize the retained consequences, may not exist. In this paper, we want to leverage advances in characterizing and computing optimal repairs of ontologies based on the description logics EL to obtain contraction operations that combine the advantages of belief set and belief base contractions. The basic idea is to employ, in the partial meet contraction approach, optimal repairs instead of optimal classical repairs as remainders. We introduce this new approach in a very general setting, and prove a characterization theorem that relates the obtained contractions with well-known postulates. Then, we consider several interesting instances, not only in the standard repair/contraction setting where one wants to get rid of a consequence, but also in other settings such as variants of forgetting in propositional and description logic. This is an extended version of an article accepted at KR 2024.
3

Belief Change in Reasoning Agents / Axiomatizations, Semantics and Computations

Jin, Yi 26 January 2007 (has links) (PDF)
The capability of changing beliefs upon new information in a rational and efficient way is crucial for an intelligent agent. Belief change therefore is one of the central research fields in Artificial Intelligence (AI) for over two decades. In the AI literature, two different kinds of belief change operations have been intensively investigated: belief update, which deal with situations where the new information describes changes of the world; and belief revision, which assumes the world is static. As another important research area in AI, reasoning about actions mainly studies the problem of representing and reasoning about effects of actions. These two research fields are closely related and apply a common underlying principle, that is, an agent should change its beliefs (knowledge) as little as possible whenever an adjustment is necessary. This lays down the possibility of reusing the ideas and results of one field in the other, and vice verse. This thesis aims to develop a general framework and devise computational models that are applicable in reasoning about actions. Firstly, I shall propose a new framework for iterated belief revision by introducing a new postulate to the existing AGM/DP postulates, which provides general criteria for the design of iterated revision operators. Secondly, based on the new framework, a concrete iterated revision operator is devised. The semantic model of the operator gives nice intuitions and helps to show its satisfiability of desirable postulates. I also show that the computational model of the operator is almost optimal in time and space-complexity. In order to deal with the belief change problem in multi-agent systems, I introduce a concept of mutual belief revision which is concerned with information exchange among agents. A concrete mutual revision operator is devised by generalizing the iterated revision operator. Likewise, a semantic model is used to show the intuition and many nice properties of the mutual revision operator, and the complexity of its computational model is formally analyzed. Finally, I present a belief update operator, which takes into account two important problems of reasoning about action, i.e., disjunctive updates and domain constraints. Again, the updated operator is presented with both a semantic model and a computational model.
4

Belief Change in Reasoning Agents: Axiomatizations, Semantics and Computations

Jin, Yi 17 January 2007 (has links)
The capability of changing beliefs upon new information in a rational and efficient way is crucial for an intelligent agent. Belief change therefore is one of the central research fields in Artificial Intelligence (AI) for over two decades. In the AI literature, two different kinds of belief change operations have been intensively investigated: belief update, which deal with situations where the new information describes changes of the world; and belief revision, which assumes the world is static. As another important research area in AI, reasoning about actions mainly studies the problem of representing and reasoning about effects of actions. These two research fields are closely related and apply a common underlying principle, that is, an agent should change its beliefs (knowledge) as little as possible whenever an adjustment is necessary. This lays down the possibility of reusing the ideas and results of one field in the other, and vice verse. This thesis aims to develop a general framework and devise computational models that are applicable in reasoning about actions. Firstly, I shall propose a new framework for iterated belief revision by introducing a new postulate to the existing AGM/DP postulates, which provides general criteria for the design of iterated revision operators. Secondly, based on the new framework, a concrete iterated revision operator is devised. The semantic model of the operator gives nice intuitions and helps to show its satisfiability of desirable postulates. I also show that the computational model of the operator is almost optimal in time and space-complexity. In order to deal with the belief change problem in multi-agent systems, I introduce a concept of mutual belief revision which is concerned with information exchange among agents. A concrete mutual revision operator is devised by generalizing the iterated revision operator. Likewise, a semantic model is used to show the intuition and many nice properties of the mutual revision operator, and the complexity of its computational model is formally analyzed. Finally, I present a belief update operator, which takes into account two important problems of reasoning about action, i.e., disjunctive updates and domain constraints. Again, the updated operator is presented with both a semantic model and a computational model.

Page generated in 0.0605 seconds