Spelling suggestions: "subject:"witwatersrand intergroup""
1 |
Composition and provenance of quartzites of the Mesoarchean Witwatersrand supergroup, South AfricaBlane, Craig Harry 09 December 2013 (has links)
M.Sc.(Geology) / The Mesoarchean Witwatersrand Supergroup is a remarkably well preserved siliciclastic dominated cratonic platform succession located on the Kaapvaal Craton in South Africa. The vast gold resources which have been mined since 1886 make it relevant for study. The study aimed to identify significant provenance shifts throughout the depositional life of the basin which should be reflected in the in heavy mineral populations and the geochemical composition of the siliciclastic rocks. The study identified major changes in the source rock compositions through the basin lifespan and inferred major tectonic events during the life of the basin. It was found that the mechanical effects of sorting in different depositional environments tended to obscure provenance shifts, but with careful evaluation of the various factors in play significant provenance shifts could be identified. It was found that these provenance shifts corresponded closely with major unconformity sequence boundaries identified by Beukes (1995). These major provenance shifts are a record of a major tectonic event during the development of the basin. The Hospital Subgroup records a passive trailing margin, fed by a combination of felsic and ultra-mafic source rocks. Within the Hospital Hill Subgroup, there is a trend of increasing ultramafic components in the source area with increasing stratigraphic height. This trend is believed to reflect progressive unroofing of tonalite and greenstone belt complexes over the life of the Hospital Hill Subgroup. At the base of the Promise Formation a basin wide unconformity is present, which marks a shift from mature shallow marine and outer shelf sediments of the Hospital Hill Subgroup to immature fluvial quartzites for the Government and Jeppestown Subgroups (Beukes, 1995). In addition to the major change in depofacies that was recognised by Beukes (1995), this study found evidence for a shift in provenance to generally more fractionated source rocks, that were heterogeneous, but well mixed. The presence of lithoclasts indicates a possible metamorphic component was also present in the source area. This is consistent with a source area containing granitoid batholiths, and granite plutonism which is associated with early subduction tectonics and volcanic arc formation during the deposition of the Government and Jeppestown Subgroups (Wronkiewicz and Condie, 1987 and Poujol, et al., 2003, Kositcin and Krapez, 2004). Another important basin wide unconformity is present at the base of the Johannesburg Subgroup, and marks another major provenance change. These rocks are chemically more mature than the Government and Jeppestown Subgroups and represent a shift to an immature fluvial depositional setting related to basin closure (Beukes, 1995). A shift to moderate Th:Sc and La:Sc suggests a less fractionated mix of source rocks. The disappearance of the lithoclasts indicates that the metamorphic source rocks no longer supplied material to the basin. A small increase in the chromite to zircon ratio also suggests that some unfractionated source rocks were present. The narrow range in Th:Sc, La:Sc, Nb:Y ratios suggests that a homogeneous source area is present, but this is contradicted by the highly variable zircon ages measured by Kositcin and Krapez (2004), so the narrow spread might indicate that the rocks are very well mixed. Zircon populations measured by Kositcin and Krapez (2004) suggest that source terrain of the Johannesburg Subgroup probably consisted of a mixture of the granitoid batholiths from which the Government and Jeppestown Subgroups are a derived as well as some intermediate igneous material with ages of 3000-2870 ma. This would reflect incorporation of syntectonic granitoid plutons into the source areas, Kositcin and Krapez, (2004). The Turffontein Subgroup rocks are very coarse and chemically mature, but they display poor to moderate sorting and rounding. The rocks were deposited in a fluvial environment but marine quartzites are not uncommon. It is believed that these rocks were transported in a high energy environment, but the duration of transportation was short. This allows for effective winnowing but insufficient time for physically mature rocks with well-rounded grains to develop, explaining the mature chemical composition but immature physical composition. The source rocks of the Turffontein Subgroup were probably the same as the Johannesburg Subgroup with the higher energy mode of transportation responsible for the observed increase in Zr:Ti ratio. It would also explain the scarcity of feldspars and chlorite in the Turffontein Subgroup. Th:Sc and Nb:Y ratios suggest highly fractionated source rocks, but care must be taken because the mature nature and coarse grainsize of these rocks make trace element analyses unreliable. The zircon population indicates the presence of 3090-3060ma (Kositcin and Krapez, 2004) granite batholiths, as well as 3000-2870 Ma (Kositcin and Krapez, 2004) syntectonic granite plutons, as well as ancient granitoid gneiss (Kositcin and Krapez, 2004) in the source area. This study has provided new support for a foreland basin origin of the Witwatersrand Supergroup, proposed by Beukes (1995), Beukes and Nelson (1995) and Nhleko (2003), resulting from orogenic collision of the Witwatersrand and Kimberley blocks along the western margin of the Witwatersrand block. The Amalia, Kraaipan and Madibe greenstone belts and Colesberg Magnetic Anomaly are probably the only remaining remnants of this orogeny today.
|
2 |
A gold, uranium and thorium deportment analysis of Witwatersrand ore from Cooke section, Rand Uranium Randfontein05 November 2012 (has links)
M.Sc. / Please refer to full text to view abstract
|
3 |
Pyrite in the Mesoarchean Witwatersrand Supergroup, South AfricaGuy, Bradley Martin 20 August 2012 (has links)
Ph.D. / Petrographic, chemical and multiple sulfur isotope analyses were conducted on pyrite from argillaceous, arenaceous and rudaceous sedimentary rocks from the Mesoarchean Witwatersrand Supergroup. Following detailed petrographic analyses, four paragenetic associations of pyrite were identified. These include: 1) Detrital pyrite (derived from an existing rock via weathering and/or erosion). 2) Syngenetic pyrite (formed at the same time as the surrounding sediment). 3) Diagenetic pyrite (formed in the sediment before lithification and metamorphism). 4) Epigenetic pyrite (formed during metamorphism and hydrothermal alteration). It was found that the distribution of the pyrite varies with respect to the stratigraphic profile of the Witwatersrand Supergroup and depositional facies within the Witwatersrand depository. In this regard, the four paragenetic associations of pyrite are either scarce or absent in marine-dominated depositional environments, which occur in the lower parts of the succession and in geographically distal parts of the depository. Conversely, the four paragenetic associations are well represented in fluvial-dominated depositional environments, which occur in the middle and upper parts of the succession and in geographically proximal parts of the depository. However, it is worth noting that diagenetic pyrite in the West Rand Group occurs as in situ segregations in carbonaceous shale, whereas syngenetic and diagenetic pyrite in the Central Rand Group occurs as reworked and rounded fragments in fluvial quartz-pebble conglomerates. The strong association between fluvial depositional environments and sedimentary pyrite (syngenetic and diagenetic pyrite) infers a continental source of the sulfur (sulfide weathering or volcanic activity), whereas the lack of pyrite in marine depositional environments is consistent with the model of a sulfate-poor Archean ocean. The connection between epigenetic pyrite and the fluvial-dominated depofacies is probably related to the elevated concentrations of precursor sulfides (i.e., remobilization of syngenetic and early diagenetic pyrite) and the presence of organic carbon (conversion of metal-rich early diagenetic pyrite into pyrrhotite and base metal sulfides). In support of the petrographic observations above, it was found that the trace element chemistry of each paragenetic association of pyrite yields a distinctive set of chemical compositions and interelement variations (Co, Ni and As contents). Regarding detrital pyrite, two chemical populations can be distinguished according to grain size: 1) small grains (tens of μm’s) with high levels of metal substitution (up to wt. %) and interelement covariation and iv 2) large grains (>100 μm) with low levels of metal substitution (≤200 ppm). These two populations are thought to represent pyrite derived from sedimentary and metamorphosed source areas, respectively (see below). The trace element chemistry of diagenetic pyrite varies relative to the Fe-content of the host rock. Diagenetic pyrite from Fe-rich host rocks, such as magnetic mudstone and banded iron formation (BIF), generally contain low Ni contents (<500 ppm), moderate As contents (<1500 ppm) and relatively high Co contents (up to a few wt. %). Elevated concentrations of As probably reflect desorption of As from clays and Fe-oxyhydroxides during diagenetic phase transformations, whereas anomalous concentrations of Co are tentatively linked to the reductive dissolution of Mn-oxyhydroxides.
|
4 |
Assessment of the mineralogical variability of the A1, UE1A, and A5-reefs at Cooke Section, Rand Uranium, using MLA-based automated mineralogyMkhatshwa, Sindile Francisca 21 August 2012 (has links)
M.Sc. / This study focuses on the mineralogical variability of the A1, A5 and UE1A Elsburg reefs, obtained at Rand Uranium’s underground mining areas. A total of 133 reef samples, consisting of the Elsburg UE1A, A1 and A5-reefs have been obtained from Cooke 2 and 3 (two of the three Rand Uranium Mines) using the conventional chip sampling method. One of the challenges faced by Rand Uranium Gold Mines in the Cooke section area is the difficulty in differentiating between the various reef types by means of their macroscopic characteristics (colour, pebble types/sizes/shapes, sorting, matrix type, visible sulphide mineralization etc.). This difficulty led to this study which is aimed at utilizing mineral liberation analyzer (MLA)-based automated mineralogy to distinguish between the various reefs and to assess the mineralogical variation within the A1, A5 and UE1A-reefs. The mineralization in this area is hosted by the upper Central Rand Group of the Witwatersrand Supergroup. The main orebodies that are exploited at the mines occur within the Gemsbokfontein Member of the Elsburg Formation. These orebodies have been deformed into an east-west trending anticline at Cooke 3. The present study also attempts to prove or disprove the equivalence of the UE1A-reef on the western limb of the anticline to the A1 or A5-reefs on the eastern limb of the anticline on the basis of mineralogy. Representative splits of the samples were subjected to mineralogical abundance quantification as possible through quantitative MLA-based modal abundance protocols such as XMOD. A standard file on the various mineralogical phases encountered, was created on the 600F MLA and complemented by quantitative XRD (X-ray diffraction) data. Mineral abundances were quantified by MLA, based on integrated backscatter electron (BSE) images and energy dispersive spectrometry (EDS) analyses. Thirty one minerals have been detected using the MLA and they include phases such as quartz, pyrophyllite, chlorite, brannerite, gold, monazite and pyrite as well as minor unknown minerals. Only a few of the minerals are relatively more abundant within the reefs while the majority occurs in very low abundance. Albite, chlorite, muscovite, pyrite, pyrophyllite, quartz, uraninite and zircon are relatively more abundant than the rest of the minerals.
|
Page generated in 0.1032 seconds