• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of weed control, clone, and stem dimensions on wood quality of 17 year old stems of Pinus radiata which has been grown on the Canterbury Plains

Callaghan, Andree January 2013 (has links)
This study determined whether variation in clone, weed control treatment, or stem dimensions, could have an impact upon outerwood stiffness in 17 year old Pinus radiata stems. An experiment located south west of the Dunsandel township in Canterbury, New Zealand, was used to collect measures of acoustic velocity (windward and downward sides) from each of the 278 trees. Diameter at breast height, tree height, and height to live crown were also recorded for each tree. Findings from this research were compared with previous research carried out when the trees were ages eight and eleven. Assuming a green density of 1,000 kg/m3, Young’s Modulus equation was used to convert acoustic velocity to wood stiffness, or, Modulus of Elasticity (MOE). The effect of wind direction upon mean wood stiffness was not significant (α = 0.05). Consequently, one measure of wood stiffness was calculated per tree. Mean stem slenderness and mean wood stiffness values were calculated by block, weed control treatment, and clone. Weed control treatments had a significant impact upon mean wood stiffness in comparison to the control treatment (0.03 m2 area of weed control). Significant differences did not exist between different levels of weed control, ie., 0.75 m2, 3.14 m2 and 9 m2 chemical spot spray area. Clonal variation and stem slenderness significantly affected mean wood stiffness measures. Stem slenderness appeared to be correlated with clonal variation (interaction between clone and slenderness was not significant), however, according to Dr. Euan Mason, this finding is not corroborated by findings from other research on the wood quality of clones in Canterbury (personal communication, September 16, 2013). An analysis of covariance (ANCOVA) determined that mean height to the live crown was not a significant predictor of wood stiffness. Comparison with earlier research showed no change in the ranking of wood stiffness values by clone or treatment.
2

Evaluating the effects of initial stocking, physiological age and species on wood stiffness

Watson, Liam January 2013 (has links)
The influence of initial stocking and physiologically aged cuttings (taken from 1-year- old and 5-year-old parents) on corewood modulus of elasticity (MOE) in 6-year-old Pinus radiata D. Don was studied in a Nelder-design experiment in Rolleston, Canterbury. In the same experiment, the influence of initial stocking on MOE in 5-year- old Eucalyptus nitens was also investigated. The study incorporated 19 different stocking levels ranging from 207 to 40,446 stems/ha. Green dynamic modulus of elasticity was assessed in standing trees using the TreeTap stress-wave method over the lower part of the stem (0.3 – 1.9m) for 151 P. radiata trees and 115 E. nitens trees. The interaction between species and stocking significantly influenced MOE (P<0.001). MOE of P. radiata increased by 55% (or 3.9 GPa) between 271 and 40,466 stems/ha, and by 41% (or 2.2 GPa) between 271 and 4370 stems/ha. MOE of E. nitens was also influenced by stocking but the slope was significantly lower indicating that the effect of stocking was less pronounced than for P. radiata. Over the usual range of stockings for E. nitens there was an insignificant relationship between stocking and stiffness (P=0.335). Trees were also assessed for DBH, height, and stem slenderness (height/ DBH). None of these latter variables had a significant influence on MOE after the effects of stocking and species were accounted for. No effects of physiological age of cuttings were detected in this study. The findings of this study highlight the importance of stocking as a tool that forest managers can utilize to regulate corewood stiffness in P. radiata trees. These results also suggest that for E. nitens, where wood stiffness is a priority, forest managers could reduce establishment costs by planting at much lower initial stockings. This study also highlights the superior stiffness of E. nitens in direct comparison with P. radiata, with many trees in the experiment already exceeding stiffness thresholds for structural timber in New Zealand.

Page generated in 0.0507 seconds