• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 7
  • 3
  • 3
  • 1
  • Tagged with
  • 61
  • 61
  • 61
  • 27
  • 17
  • 14
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

First Principles Calculations for Liquids and Solids Using Maximally Localized Wannier Functions

Swartz, Charles W. January 2014 (has links)
The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can be further engineered in the PbTiO 3 /SrTiO 3 superlattice and an interface enhancement of piezoelectricity is found in the BaTiO 3 /CaTiO 3 superlattice. The second project will look at The ionization potential distributions of hydrated hydroxide and hydronium which are computed within a many-body approach for electron excitations using configurations generated by ab initio molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by solvent water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions. The third project represents a work in progress, where we also make use of the previous electron excitation theory applied to ab initio x-ray emission spectroscopy. In this case we make use of a novel method to include the ultrafast core-hole electron dynamics present in such situations. At present we have shown only strong qualitative agreement with experiment. / Physics
22

Double Excitations in Helium Atoms and Lithium Compounds

Agåker, Marcus January 2006 (has links)
This thesis addresses the investigation of doubly excited 2l´nl states in helium atoms and double core excitations in solid lithium compounds. Measurements on He are made in field free environments and under the influence of electric and magnetic fields, using synchrotron based inelastic photon scattering. Cross sections for scattering to singly excited final states are directly determined and compared to theoretical results and are found to be in excellent agreement. Radiative and spin-orbit effects are quantified and are shown to play an important role in the overall characterization of highly excited He states below the N =2 threshold. A dramatic electric field dependence is also observed in the flourecence yield already for relatively weak fields. This signal increase, induced by electric as well as magnetic fields, is interpreted in terms of mixing with states of higher fluorescence branching ratios. Double core excitations at the lithium site in solid lithium compounds are investigated using resonant inelastic x-ray scattering (RIXS). The lithium halides LiF, LiCl, LiBr and LiI are studied as well as the molecular compounds Li2O, Li2CO3 and LiBF4. States with one, as well as both, of the excited electrons localized at the site of the bare lithium nucleus are identified, and transitions which involve additional band excitations are observed. A strong influence of the chemical surrounding is found, and it is discussed in terms of the ionic character of the chemical bond.
23

Propriétés magnétiques des supraconducteurs non conventionnels epsilon-Fe, FeSe, et Ca2CuO2Cl2 étudiés par diffusion des rayons X et des neutrons / Magnetic properties of the unconventional superconductors epsilon-Fe, FeSe and Ca2CuO2Cl2 investigated by x-ray and neutron scattering

Lebert, Blair Wilfred 26 January 2018 (has links)
La proximité omniprésente de l’ordre magnétique et supraconducteur dans les supraconducteurs non conventionnels implique l’importance de comprendre le magnétisme dans ces matériaux. Dans ce contexte, cette thèse porte sur l’étude du magnétisme dans trois supraconducteurs non conventionnels. Les excitations magnétiques dans le système d’oxychlorure de cuivre de l’élément léger Ca2CuO2Cl2 ont été étudiées en fonction du dopage et de la température en utilisant principalement la diffusion inélastique résonante aux rayons X. L’effet de la pression sur le magnétisme dans epsilon-fer et le beta-FeSe a été étudié en utilisant la spectroscopie d’émission des rayons X et la diffraction des neutrons sur poudre. / The ubiquitous proximity of magnetic and superconducting order in unconventional superconductors implies the importance of understanding magnetism in these materials. In this context, this thesis concerns the study of magnetism in three unconventional superconductors. The magnetic excitations in the light element copper oxychloride system Ca2CuO2Cl2 were studied as a function of doping and temperature using primarily resonant inelastic x-ray scattering. The effect of pressure on magnetism in epsilon-iron and beta-FeSe was studied using x-ray emission spectroscopy and neutron powder diffraction.
24

Double Excitations in Helium Atoms and Lithium Compounds

Agåker, Marcus January 2006 (has links)
<p>This thesis addresses the investigation of doubly excited <i>2l´nl</i> states in helium atoms and double core excitations in solid lithium compounds.</p><p>Measurements on <i>He</i> are made in field free environments and under the influence of electric and magnetic fields, using synchrotron based inelastic photon scattering. Cross sections for scattering to singly excited final states are directly determined and compared to theoretical results and are found to be in excellent agreement. Radiative and spin-orbit effects are quantified and are shown to play an important role in the overall characterization of highly excited <i>He </i>states below the <i>N =2</i> threshold. A dramatic electric field dependence is also observed in the flourecence yield already for relatively weak fields. This signal increase, induced by electric as well as magnetic fields, is interpreted in terms of mixing with states of higher fluorescence branching ratios.</p><p>Double core excitations at the lithium site in solid lithium compounds are investigated using resonant inelastic x-ray scattering (RIXS). The lithium halides <i>LiF, LiCl, LiBr</i> and <i>LiI </i>are studied as well as the molecular compounds <i>Li</i><i>2</i><i>O, Li</i><i>2</i><i>CO</i><i>3</i> and <i>LiBF</i><i>4</i>. States with one, as well as both, of the excited electrons localized at the site of the bare lithium nucleus are identified, and transitions which involve additional band excitations are observed. A strong influence of the chemical surrounding is found, and it is discussed in terms of the ionic character of the chemical bond.</p>
25

X-ray Transitions in Broad Band Materials

2013 August 1900 (has links)
The general application of soft X-ray spectroscopy in the study of the electronic structure of materials is discussed, with particular emphasis on broad band materials. Several materials are studied using both soft X-ray spectroscopy and density functional theory to provide experimental and theoretical electronic structures, respectively. In particular, bonding, cation hybridization, and band gaps for several binary oxides (the alkali oxides: BeO, MgO, CaO, SrO, BaO; the post-transition metal oxides: ZnO, CdO, HgO; and the period 5 oxides In2O3, SnO, SnO2, Sb2O3, Sb2O5, and TeO2) are studied. The technique of using the peaks in the second derivatives of an X-ray emission and an X-ray absorption spectrum to estimate the band gap of a material is critically analyzed, and a more accurate ``semi-empirical'' method that involves both measured spectra and theoretical calculations is proposed. The techniques used in the study of binary oxides are then applied to a more interesting (and industrially relevant) group of ternary oxides based on TiO2 (PbTiO3, Sn2TiO4, Bi2Ti4O11, Bi4Ti3O12, and ZnTiO3), and a general rule for the band gaps of these materials is suggested based on empirical data. This research may help direct efforts in synthesizing a hydrogen-producing photocatalyst with a band gap that can efficiently harness the bulk of the solar spectrum. Finally, several layered pnictide superconductors and related compounds (CaFe2As2, Co-, Ni- and Cu-doped BaFe2As2, LiFeAs, LiMnAs, CaCu1.7As2, SrCu2As2, SrCu2(As0.84Sb0.16)2, SrCu2Sb2, and BaCu2Sb2) are studied. The X-ray spectra provide rather strong evidence that these materials lack strong on-site Hubbard-like correlations, and that their electronic structures are almost entirely like those of a broad band metal. In particular, it is shown that the notion that the transition metals are all divalent is completely wrong for copper in a layered pnictide, and that at best in these systems the copper is monovalent.
26

Investigating cell adhesion to controlled surface chemistry via self-assembly of binary composition alkylthiol monolayers, streptavidin immobilization, and cell receptor ligand attachment /

Nelson, Kjell Erik, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 177-181).
27

Quantification of trace metals in an adsorbent using proton induced x-ray emission

Yadav, Nirbhay Narayan. January 2005 (has links)
Thesis (M.Sc.)(Hons) -- University of Western Sydney, 2005. / "A thesis presented to the University of Western Sydney in fulfilment of the requirements for the degree of Master of Science (Honours) Physics" Bibliography: leaves 101-108.
28

Estudo das partículas inorgânicas de resinas compostas : revisão sistemática e caracterização química e morfológica /

Lima, João Paulo Martins de. January 2008 (has links)
Orientador: Sizenando de Toledo Porto Neto / Banca: José Roberto Cury Saad / Banca: Victor Humberto Orbegoso Flores / Resumo: Atualmente, vários novos materiais estéticos são lançados no mercado odontológico destinados especificamente à confecção de restaurações diretas. Embora tais compósitos apresentem bons resultados clínicos, o que garantem ser indicados nas regiões anterior e posterior, ha a necessidade de comprovações adicionais para que se possam ser utilizados com segurança. As informações disponíveis de cada material recém introduzido ainda trazem duvidas sobre sua real composição e sobre suas propriedades físicas e mecânicas, gerando confusão para o clinico, que pode estar ciente ou não de qual resina melhor atende as necessidades de cada paciente. O conhecimento dimensional do conteúdo inorgânico dos sistemas de resinas compostas ainda e o responsável pela classificação dos mesmos e parecem estimar sobre suas propriedades mecânicas. Assim, nos propusemos a (1) estudar através de ampla e profunda revisão sistemática da literatura, a influencia das partículas inorgânicas nas propriedades físicas, químicas e mecânicas de resinas compostas e; (2) descrever a morfologia e a composição química das partículas inorgânica das resinas compostas atuais, como forma de dotar o clinico de um parâmetro de comparação entre os materiais restauradores resinosos, e de auxiliá-lo na indicação deste material mediante situação clínica. Na primeira etapa de nosso estudo, foram determinados os critérios de inclusão e exclusão, e estabelecida a estratégia de busca - palavras-chave e limites de assuntos, em varias combinações - dos estudos laboratoriais nas principais bases de dados eletrônicas (ISI - Web of Science, Medline, Biblioteca Cochrane, SciELo, Lilacs e Biblioteca Digital de Teses - Portal Capes), e outras fontes de informação. / Abstract: Currently, dozens of new aesthetic materials are launched on the dentistry market designed specifically to the confection of direct restorations. Although such composite show good clinical results, which guarantees be given in anterior and posterior regions, there is a need for additional evidence so that it can be used safely. The information available of each newly introduced material also brings questions about their real composition and on its physical and mechanical properties, creating confusion for the clinician, which may be or not aware of resin which best meets the necessities of each patient. The dimensional knowledge of the inorganic content of the composed resin systems also is responsible for the classification of the same ones and seems estimate on its mechanical properties. Thus, we proposed (1) to study through extensive and meticulous systematic review of literature, the influence of inorganic particles in the physical, chemical and mechanical properties of composite resins and; (2) to describe the morphology and chemical composition of the inorganic particles of current composite resins, as a way of giving the clinician with a parameter of comparison among the resinous restorative materials, and of assisting it in the indication of this material through of clinical situation. In the first stage of our study, the criteria of inclusion and exclusion had been determined, and established the strategy of search - keywords and limits of subjects, in some combinations - of the laboratory studies in the main electronic databases ((ISI - Web of Science, Medline, Biblioteca Cochrane, SciELo, Lilacs and Digital Library of Theses - Portal Capes), and others sources of information. Of the 138 abstracts located, only 59 were selected (most located on Pubmed) being in accordance with the pre-established criteria. / Mestre
29

X-ray spectroscopy of electronic band structure in vanadium oxide nanoparticles

Anquillare, Emma L. B. 25 September 2021 (has links)
In order to elucidate the effects of nanostructuring on electron behavior in vanadium oxides, a suite of x-ray spectroscopy techniques was employed to comprehensively characterize the electronic structures of V2O5 and VO2 nanoparticles and compare them to their bulk counterparts. V2O5 and VO2 nanoparticle powders were characterized via PXRD, TEM, and HR-TEM to confirm size, purity, and crystallinity. Additionally, DSC and temperature-varied PXRD measurements on both VO2 samples confirmed the structural aspect of the monoclinic to rutile metal-insulator phase transition, and UV-Vis measurements allowed for Kubelka-Munk analysis on the V2O5 samples. XAS measurements enable the comparison of unoccupied conduction band states, while XES and RIXS measurements reveal occupied valence band states and the individual vanadium and oxygen PDOS below the Fermi level. XPS measurements of both core and valence band states both confirmed the valence band structure revealed by XES and also provide information on core-state energy levels. In the case of V2O5, the valence band O 2p states are upshifted in the nanoparticle sample, while the lowest V 3d conduction band states are unshifting but provide more available unoccupied states for excitation. These changes produce a shrunken bandgap in the V2O5 nanoparticles that is in line with much previous computational work, but unexpected from previous experimental results and defies the Moss-Burstein effect usually observed in V2O5. The resulting changes in band structure are attributed to a higher concentration of oxygen vacancy defects in the nanoparticle sample. Additionally, electron correlation effects in V2O5 nanoparticles are found to be enhanced relative to the bulk, likely due to added electron presence in the V 3d split-off band. In the case of VO2, dramatic changes in both the valence band and conduction band states are observed both below and above the structural phase transition temperature. These changes (lowered unoccupied conduction band states coupled with broadened and upshifted occupied valence band states) also lead to nanoparticle bandgap reduction and enhanced metallicity. The enhanced metallic nature of the VO2 nanoparticles is again attributed to the increased presence of surface oxygen vacancy defects, as well as a V2O3-like surface reconstruction. Additionally, electron correlation effects are found to be reduced in the VO2 nanoparticle samples relative to the bulk, unlike in the case of V2O5.
30

Studium projevů magnetické rekonexe ve slunečních erupcích / Magnetic reconnection and its manifestations in solar flares and eruptions

Lörinčík, Juraj January 2021 (has links)
Solar flares and eruptions are manifestations of violent releases of magnetic energy from the solar atmosphere. They are powered by magnetic reconnection, a mechanism in which magnetic field lines change their connectivities to reach a lower-energetic state. Theoretical predictions regarding the generalised three-dimensional magnetic reconnection are imposed by the standard flare model in 3D. In this work we present the results of five peer-reviewed publications in which we focused on different predicted aspects of magnetic reconnection in 3D. We analyse evolution and morphology of seven eruptive flares, primarily using observations of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. In the first publication, (Lörinčík et al., 2019a), we interpreted variations of velocities of slipping flare kernels using the mapping norm of field line connectivity simulated via the model. In Lörinčík et al. (2019b) we showed that the observed conversion of filament strands to flare loops is a signature of the 'ar-rf' reconnection geometry between erupting flux rope and overlying coronal arcades. In another observation (Dudík, Lörinčík et al. (2019)), all constituents of this geometry were successfully identified together with the constituents of the 'rr-rf' geometry between two...

Page generated in 0.1975 seconds