• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metals in enzyme catalysis and visualization methods

Easthon, Lindsey 12 August 2016 (has links)
Metal ions play essential roles in biological functions including catalysis, protein stability, DNA-protein interactions and cell signaling. It is estimated that 30% of proteins utilize metals in some fashion. Additionally, methods by which metal ions can be visualized have been utilized to study metal concentrations and localizations in relation to disease. Understanding the roles metals play in biological systems has great potential in medicine and technology. Chapters 1 and 2 of this dissertation analyzes the structure and function of the Mn-dependent enzyme oxalate decarboxylase (OxDc) and Chapter 2 presents a bioinformatic analysis of the cupin superfamily that provides the structural scaffold of the decarboxylase. The X-ray crystal structure of the W132F variant was determined and utilized together with EPR data to develop a computational approach to determining EPR spectra of the enzyme’s two metal-binding centers. Furthermore, a variant in which the catalytic Glu162 was deleted revealed the binding mode of oxalate, the first substrate-bound structure of OxDc. OxDc is a member of the cupin superfamily, which comprises a wide variety of proteins and enzymes with great sequence and functional diversity. A bioinformatics analysis of the superfamily was performed to analyze how sequence variation determines function and metal utilization. Chapters 3 and 4 discuss the expansion of lanthanide-binding tags (LBTs) to in cellulo studies. Lanthanide-binding tags are short sequences of amino acids that have high affinity and selectivity for lanthanide ions. An EGF-LBT construct used to quantify EGF receptors on the surface of A431 and HeLa cells. The results from the LBT quantification are consistent with previous studies of EGFR receptors in these cell types, validating the use of this method for future studies. The potential of using LBTs for X-ray fluorescence microscopy (XFM) was also investigated. LBT-labeled constructs were utilized to investigate if membrane bound as well as cytosolic LBT-containing proteins could be visualized and localized to their cell compartments via XFM; both membrane-localized and cytosolic proteins were successfully visualized. With the high resolution (< 150 Å) obtainable with new synchrotron beamline configurations LBTs could be used to study nanoscale biological structures in their near-native state.
2

Sublethal Effects of Heavy Metal and Metalloid Exposure in Honey Bees: Behavioral Modifications and Potential Mechanisms

January 2016 (has links)
abstract: Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators. / Dissertation/Thesis / Doctoral Dissertation Neuroscience 2016
3

Synchrotron microanalysis of gallium as a potential novel therapy for urinary tract infections

2014 February 1900 (has links)
Most urinary tract infections in humans and dogs are caused by uropathogenic strains of , and increasing antimicrobial resistance among these pathogens has created a need for a novel approach to therapy. Bacterial iron uptake and metabolism are potential targets for novel antimicrobial therapy, as iron is a limiting factor in . growth during infection. As a trivalent metal of similar atomic size to iron (III), gallium can interact with a wide variety of biomolecules that normally contain or interact with iron. Gallium compounds disrupt bacterial iron metabolism, are known to accumulate at sites of infection and inflammation in mammals, exert antimicrobial activity against multiple bacterial pathogens in vitro, and may be good candidates as novel antimicrobial drugs. We assessed the suitability of orally administered gallium maltolate as a potential new antimicrobial therapy for urinary tract infections by evaluating its distribution into the bladder, its activity against uropathogenic . in vitro, and its pharmacokinetics and efficacy in a mouse cystitis model. Using a novel application of synchrotron-based analytical methods, we confirmed the distribution of gallium to the bladder mucosa and characterized the relationship between iron and gallium distribution in the bladder. In vitro experiments with human and canine uropathogenic . isolates demonstrated that gallium maltolate exerts antimicrobial effects in a time-dependent, bacteriostatic manner. Minimum inhibitory concentrations ranged from 0.144 µmol/mL to >9.20 µmol/mL with a median of 1.15 µmol/mL. Isolates resistant to ampicillin, ciprofloxacin, or with decreased susceptibility to cephalothin were susceptible to the antimicrobial activity of gallium maltolate, suggesting that resistance to conventional antimicrobials does not predict resistance to gallium maltolate. Pharmacokinetic studies in healthy mice and in a mouse model of urinary tract infection confirmed that gallium is absorbed into systemic circulation after oral administration of gallium maltolate. Gallium is slowly eliminated from the body, with a trend toward longer terminal half-lives in blood and bladder for infected mice relative to healthy mice. This study did not reveal any statistically significant effect of infection status on maximum blood gallium concentrations (4.46 nmol/mL, 95% confidence interval 2.75 nmol/mL – 6.18 nmol/mL and 4.80 nmol/mL, 95% confidence interval 2.53 nmol/mL – 7.06 nmol/mL in healthy and infected mice, respectively) or total gallium exposure in blood and kidney as represented by area under the concentration vs. time curves. Gallium exposure in the bladder was significantly greater for mice with urinary tract infections than for healthy mice. The investigation of gallium distribution within tissues represented a novel application of synchrotron-based analytical techniques to antimicrobial pharmacokinetics. Prior to analysing tissue samples, a library of x-ray absorption spectra was assembled for gallium compounds in both the hard and soft x-ray ranges. The suitability of hard x-ray fluorescence imaging and scanning and transmission x-ray microscopy for localizing and speciating trace elements in tissues was subsequently assessed. Of these methods, only hard x-ray microprobe analysis was well-suited to the analysis and was successfully used for this application. This approach confirmed that gallium arrives at the bladder mucosa after oral administration of gallium maltolate. Furthermore, comparison of iron and gallium distribution within the bladder mucosa indicated that these elements are similarly but not identically distributed and that they do not significantly inhibit one another’s distribution. This finding suggests that gallium may be distributed in part via pathways that do not involve iron. Despite the favorable distribution characteristics of gallium and the persistence of gallium in target tissues following the oral administration of gallium maltolate, its efficacy in a mouse model of urinary tract infection was disappointing. In this study, no statistically significant difference was detected between gallium maltolate, ciprofloxacin and sham treatments in their ability to eliminate bacteria in the urinary tracts. The failure of ciprofloxacin treatment to render bladder tissue culture-negative for an organism that is classified as ciprofloxacin-susceptible in vitro is consistent with observations from other research groups. The similar lack of efficacy observed for gallium maltolate may be related to the large gap between minimum inhibitory concentrations observed in vitro and gallium concentrations observed in tissues from treated mice, but may also be related to the small study size if the effect size of gallium maltolate treatment is small. Given the magnitude of the difference between tissue concentrations and minimum inhibitory concentrations, it may not be possible to increase the dose sufficiently to achieve therapeutic concentrations without causing toxicity. While the results of these experiments suggest that orally administered gallium maltolate may not be a reasonable antimicrobial drug candidate for treating urinary tract infections caused by uropathogenic . , it may be useful for other applications. Other bacterial pathogens may be more susceptible to the antimicrobial effects of gallium maltolate, and local or topical administration could produce much higher concentrations than we observed following oral administration. Continued development of the synchrotron-based analytical techniques used in these experiments could provide new and important opportunities to investigate antimicrobial distribution and metabolism within cells and tissues, particularly for metal-based drugs.

Page generated in 0.122 seconds