• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 28
  • 10
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Self-Assembled Host-Guest Thin Films for Functional Interfaces

Erdy, Christine 29 December 2008 (has links)
The functionalization of surfaces has received attention because the process allows the design and tailoring of substrate surfaces with a new or improved function. "Host-guest" thin film complexes are composed of "host" molecules attached the substrate surface, either through physisorption or covalent bonds, with cavities for the inclusion of desired "guest" molecules for the functionalization of the surface. Two methods for fabricating functional "host-guest" thin films were investigated: Langmuir-Blodgett (LB) deposition and self-assembly monolayer (SAM). Langmuir films were created at the air-water interface using octadecanesulfonic acid (C18S) as the amphiphilic "host" molecules separated by hydrophilic guanidinium (G) spacer molecules, which created a cavity allowing the inclusion of desired "guest" molecules. Surface pressure-area isotherms of the (G)C18S, with and without guests, are characterized by the lift-off molecular areas and are use to determine the proper deposition surface pressure. "Host-guest" Langmuir films are deposited onto silicon substrates using the LB deposition technique. The LB films were then subjected to stability testing using different solvents over increasing periods of time. Grazing-angle incidence X-ray diffraction (GIXD), specular X-ray reflectivity (XRR) and transfer ratio measurements were used to characterize the crystallinity, film thickness, overall film stability and film coverage. The GIXD data revealed that the crystallinity of the deposited film varies with the "guest" molecules and can be disrupted by the functional group on the "guest" molecule through hydrogen bonding. After modeling the XRR data using StochFit, it was discovered that the more polar solvent, tetrahydrofuran (THF), removed the film completely while the nonpolar solvent, hexane, compacted the thin film and increased the electron density. With transfer ratios around 0.95 to 1.05, the deposited films were homogenous. The second method used was self-assembly monolayers, which differs from Langmuir films in that they are created by a spontaneous chemical synthesis from immersing a substrate into a solution containing an active surfactant. Octadecyltrichlorosilane (OTS) was used initially as a molecule to study the self-assembled monolayer procedure. To study a "host-guest" self-assembled monolayer system, a compound is being synthesized from 9-bromoanthracene. This compound would already contain the cavity necessary for the inclusion of "guest" molecules. The solution that contained OTS was composed of a 4:1 mixture of anhydrous octadecane: chloroform. Silicon substrates with a deposited oxide layer were hydroxylated for the surfactant binding chemical reaction to occur. The OTS SAMs were exposed to the same stability tests as the LB films. Surface contact angle measurements were taken of the OTS SAMs before and after the stability tests. The contact angle prior to the stability tests was 110° (±2°). The contact angle after immersion in THF was 101° (±2°) while the contact angle resulting from immersion in hexane was 105° (±2°). From the contact angle measurements, the degradation of the OTS SAMs was less extensive than that of the (G)C18S LB films. / Master of Science
12

Influence of biologically relevant thin-film morphology on protein immobilization and cell-adhesion

Argekar, Sandip U. January 2013 (has links)
No description available.
13

Mesomorphism of Newly Synthesized Mesogens and Surface Morphology of Chalcogenide Glass Thin Films

Sharpnack, Lewis Lee 17 July 2017 (has links)
No description available.
14

Morphology and Protection Mechanisms of Epoxy-silane Anti-Corrosion Coatings

Wang, Peng January 2009 (has links)
No description available.
15

Thermosensitive gold nanoparticles : solution optical properties and interfacial behaviour / Nanoparticules d’or thermosensibles : propriétés optiques en solution et comportement à l’interface

Said-Mohamed, Cynthia 14 November 2011 (has links)
L’objectif de cette thèse est de contrôler les propriétés optiques des nanoparticules d’or greffées de polymère en modulant les propriétés structurales de la couche protectrice de polymères. Des nanoparticules greffées de polymères thermosensibles avec une large gamme de masse molaire et différents degrés d’hydrophobicité sont synthétisées par la méthode de « grafting-to ». La DNPA est utilisée pour caractériser les propriétés structurales de la couche protectrice de polymère. Les spectres d’absorption sont modélisés en utilisant la théorie de Mie. Nous démontrons que la sensibilité de la SPR à la propriété diélectrique du solvant diminue progressivement avec la fraction volumique de la couche de polymère jusqu’à devenir quasi-nulle; dans ce dernier cas de figure, la SPR est dite « gelée » par la couche de polymère. Un déplacement significatif de la bande de SPR vers le rouge est induit (un changement de couleur se produit) dû à une transition de collapse de la couche de polymère avec la température. La gamme de température pour induire ce déplacement dépend du degré d’hydrophobicité du polymère et de la salinité. Une partie important de cette thèse est également consacrée aux propriétés des nanoparticules d’or greffées de polymères à l’interface air-eau. La technique de Langmuir est utilisée pour former des films minces dont la distance entre particule est contrôlée par la compression, la longueur des chaînes du polymère greffé et la température. Les propriétés structurales des films minces sont étudiées en déterminant la conformation de la couche de polymère greffée et l’organisation du cœur de l’or par la réflectivité de neutron et de X, respectivement. Les mesures de réflectivité nous permettent également d’évaluer et d’améliorer la stabilité des films minces pour un meilleur control de la distance entre particule, aspect important pour l’optimisation de la SPR. Enfin, les propriétés optiques des nanoparticules d’or à l’interface sont mesurées par des mesures de transmission. / In this thesis, the objective is to control the polymer-grafted gold nanoparticles optical properties (SPR) by tuning the protecting polymer shell structural properties. Gold nanoparticles grafted with thermosensitive polymers with a large range of molecular masses and different degrees of hydrophobicity are synthesized by “grafting-to” technique. SANS is employed to characterize the protecting polymer shell structural properties. The absorption spectra are modeled using the Mie Dipolar theory. It is shown that the gold nanoparticle sensitivity to external solvent is progressively reduced with increasing polymer volume fraction of the nanocomposite until the SPR is frozen by the polymer shell. In this case, the SPR mode becomes insensitive to the dielectric properties of the solvent. SPR is also red-shifted (a color change occurs) by thermally inducing the collapse of the polymer shell. The temperature and the extent of the red-shift are controlled by the graft polymer hydrophobicity and salinity. An important part of this thesis is also dedicated to the polymer-protected gold nanoparticles behaviour at the air-water interface. The Langmuir balance technique is used to build interfacial layers whose interparticle distance is modulated by compression, polymer graft chain length and temperature. The interfacial layer structural properties are determined by studying both the polymer graft layer conformation and the gold core organization with neutron and X-ray reflectivities. These reflectivitity measurements also enable us to evaluate and ameliorate the surface layers stability for a better control of the interparticle distance that is important for optimizing the SPR of the surface layer.
16

Growth of Pt/Mg Multilayer X-ray Mirrors : Effects of Sputter Yield Amplification / Nil : Nil

Sohail, Hafiz Muhammad January 2009 (has links)
<p>This thesis report is focused on the growth of Pt/Mg multilayers and the studies of the sputter yield amplification effect in these. The main application is to use the multilayers as X-ray mirrors reflecting an X-ray wavelength of 17 Å. This wavelength is important for astronomical applications in general, and solar imaging applications in particular.</p><p>For periodic X-ray multilayer mirrors only a certain specific wavelength of X-rays can be reflected. What wavelength that is reflected depends on the individual layer thicknesses of the materials that are constituting the multilayer. These thicknesses can be determined using modified Bragg’s law and are approximately a quarter of the wavelength.</p><p>In order to obtain the exact desired layer thickness of each individual layer it is necessary to understand the growth processes and the effects that are going on during deposition of such multilayer mirrors. It has been shown that when depositing multilayers consisting of one very light and one very heavy material, like e.g. Pt and Mg, the deposition rate of the light element is non-linear with deposition time for thin layers. This is because of backscattered energetic neutrals from the heavy target material, which affects the growing film. Furthermore, a sputter yield amplification is present for thin layers when a light element is grown on top of a heavy element, i.e. for Mg on top of Pt.</p><p>Dual DC magnetron sputtering has been used to grow the Pt/Mg multilayers, and the influence of the backscattered energetic neutrals and the sputter yield amplification effect has been studied for Ar and Kr sputtering gases at pressures ranging from 3 up to 9 mTorr. The individual layer thicknesses have been obtained from simulations of hard X-ray reflectivity measurements using the IMD program. The number of backscattered energetic neutrals and their energies at the target have been calculated using the TRIM code.</p><p>Using the results obtained it is now possible to predict and compensate for the non-linear deposition rate of Mg.</p>
17

Growth of Pt/Mg Multilayer X-ray Mirrors : Effects of Sputter Yield Amplification / Nil : Nil

Sohail, Hafiz Muhammad January 2009 (has links)
This thesis report is focused on the growth of Pt/Mg multilayers and the studies of the sputter yield amplification effect in these. The main application is to use the multilayers as X-ray mirrors reflecting an X-ray wavelength of 17 Å. This wavelength is important for astronomical applications in general, and solar imaging applications in particular. For periodic X-ray multilayer mirrors only a certain specific wavelength of X-rays can be reflected. What wavelength that is reflected depends on the individual layer thicknesses of the materials that are constituting the multilayer. These thicknesses can be determined using modified Bragg’s law and are approximately a quarter of the wavelength. In order to obtain the exact desired layer thickness of each individual layer it is necessary to understand the growth processes and the effects that are going on during deposition of such multilayer mirrors. It has been shown that when depositing multilayers consisting of one very light and one very heavy material, like e.g. Pt and Mg, the deposition rate of the light element is non-linear with deposition time for thin layers. This is because of backscattered energetic neutrals from the heavy target material, which affects the growing film. Furthermore, a sputter yield amplification is present for thin layers when a light element is grown on top of a heavy element, i.e. for Mg on top of Pt. Dual DC magnetron sputtering has been used to grow the Pt/Mg multilayers, and the influence of the backscattered energetic neutrals and the sputter yield amplification effect has been studied for Ar and Kr sputtering gases at pressures ranging from 3 up to 9 mTorr. The individual layer thicknesses have been obtained from simulations of hard X-ray reflectivity measurements using the IMD program. The number of backscattered energetic neutrals and their energies at the target have been calculated using the TRIM code. Using the results obtained it is now possible to predict and compensate for the non-linear deposition rate of Mg.
18

A Structural Viewpoint of Magnetism in Fe and Co Based Superlattices

Björck, Matts January 2007 (has links)
In order to understand the properties of thin film devices, knowledge of the material's structure is essential. The work presented here combines magnetic and structural characterization of the systems studied to gain a deeper physical understanding. The magnetic properties have been studied with a combination of x-ray magnetic circular dichroism, SQUID magnetometry and magneto-optical Kerr effect. For the structural characterization, x-ray reflectivity and diffraction have been used, complemented by neutron diffraction and transmission electron microscopy. One structural property that affects the magnetic moment in metal-on-metal superlattices is interdiffusion between the layers. This is discussed for bcc Fe/Co(001) and bcc Fe81Ni19/Co(001) superlattices. The effect of interdiffusion was seen as a large region of enhanced magnetic moments as compared to theoretical calculations, which assume perfectly sharp interfaces. For the Fe81Ni19/Co(001) superlattices the chemical interface region, as revealed by neutron diffraction, was in good agreement with the region of magnetic enhancement. Another structural property that has been investigated is the strain in the magnetic layers. This does not affect the spin magnetic moment to a large extent. However the magnetocrystalline anisotropy and the orbital moment are affected by the presence of strain. The effects on the orbital moment from strain and interfaces for Fe in Fe/V superlattices was studied, and it was found that the two contributions were separable. In this context the effect of strain on the out-of-plane magnetocrystalline anisotropy in FeCo/Pt has also been studied. The latter system is interesting from a technological perspective since tetragonally distorted FeCo alloys have the potential to be suitable new materials in computer hard drives. Finally, a computer program, based on the Differential Evolution algorithm, to refine primarily x-ray reflectivity data, is presented.
19

Exploring the Nanoscale Structures of Atmospheric Plasma Polymerized Films

Rossi Yorimoto, Brenna 10 August 2023 (has links)
No description available.
20

X-ray Scattering Investigations Of Metallic Thin Films

Warren, Andrew 01 January 2013 (has links)
Nanometric thin films are used widely throughout various industries and for various applications. Metallic thin films, specifically, are relied upon extensively in the microelectronics industry, among others. For example, alloy thin films are being investigated for CMOS applications, tungsten films find uses as contacts and diffusion barriers, and copper is used often as interconnect material. Appropriate metrology methods must therefore be used to characterize the physical properties of these films. Xray scattering experiments are well suited for the investigation of nano-scaled systems, and are the focus of this doctoral dissertation. Emphasis is placed on (1) phase identification of polycrystalline thin films, (2) the evaluation of the grain size and microstrain of metallic thin films by line profile analysis, and (3) the study of morphological evolution in solid/solid interfaces. To illustrate the continued relevance of x-ray diffraction for phase identification of simple binary alloy systems, Pt-Ru thin films, spanning the compositional range from pure Pt to pure Ru were investigated. In these experiments, a meta-stable extension of the HCP phase is observed in which the steepest change in the electronic work function coincides with a rapid change in the c/a ratio of the HCP phase. For grain size and microstrain analysis, established line profile methods are discussed in terms of Cu and W thin film analysis. Grain sizes obtained by x-ray diffraction are compared to transmission electron microscopy based analyses. Significant discrepancies between x-ray and electron microscopy are attributed to sub-grain misorientations arising from dislocation core spreading at the film/substrate interface. A novel "residual" full width half max parameter is introduced for examining the iv contribution of strain to x-ray peak broadening. The residual width is subsequently used to propose an empirical method of line profile analysis for thin films on substrates. X-ray reflectivity was used to study the evolution of interface roughness with annealing for a series of Cu thin films that were encapsulated in both SiO2 and Ta/SiO2. While all samples follow similar growth dynamics, notable differences in the roughness evolution with high temperature ex-situ annealing were observed. The annealing resulted in a smoothing of only one interface for the SiO2 encapsulated films, while neither interface of the Ta/SiO2 encapsulated films evolved significantly. The fact that only the upper Cu/SiO2 interface evolves is attributed to mechanical pinning of the lower interface to the rigid substrate. The lack of evolution of the Cu/Ta/SiO2 interface is consistent with the lower diffusivity expected of Cu in a Cu/Ta interface as compared to that in a Cu/SiO2 interface. The smoothing of the upper Cu/SiO2 interface qualitatively follows that expected for capillarity driven surface diffusion but with notable quantitative deviation.

Page generated in 0.0749 seconds