Spelling suggestions: "subject:"fixed9point"" "subject:"fixedpoint""
1 |
Automated Fixed-Point Analysis and Bit Width Selection in Digital Signal Processing Circuits Using PtolemyGibelyou, Derrick S. 11 July 2011 (has links) (PDF)
When designing custom hardware to implement signal processing algorithms, it is important to select bitwidths that meet the minimum error requirements while minimizing implementation area. Larger bitwidths reduce error, but increase area, while selecting smaller bitwidths does the opposite. Finding the set of bitwidths that produces the smallest area that still meets the error requirements has been shown to be NP-hard. To address this problem, many heuristics have been developed. Unfortunately, they are not always well documented and do not have available source code. It is also di cult to know which algorithm to try to use. This thesis addresses these challenges in several ways. It provides the necessary background information to understand bitwidth optimization algorithms, as well as a survey of the existing literature. It also presents a new framework called Bitwidth Analysis Tool (BAT) built on the open source Ptolemy tool. This framework is designed to help implement and compare bitwidth optimization algorithms. Some existing algorithms are implemented within this new framework, and compared with each other on a variety of benchmarks. The comparison results verify that because the tested algorithms are heuristics, no single algorithm gives the best results in all cases. It is therefore important to test a variety of algorithms to try to find the best answer. The results also show existing algorithms and error models provide a good starting point, but existing error models do not yet provide sufficiently tight bounds to be useful in large complex systems.
|
2 |
Numerical Methods for Pricing a Guaranteed Minimum Withdrawal Benefit (GMWB) as a Singular Control ProblemHuang, Yiqing January 2011 (has links)
Guaranteed Minimum Withdrawal Benefits(GMWB) have become popular riders on variable annuities. The pricing of a GMWB contract was originally formulated as a singular stochastic control problem which results in a Hamilton Jacobi Bellman (HJB) Variational Inequality (VI). A penalty method method can then be used to solve the HJB VI. We present a rigorous proof of convergence of the penalty method to the viscosity solution of the HJB VI assuming the underlying asset follows a Geometric Brownian Motion. A direct control method is an alternative formulation for the HJB VI. We also extend the HJB VI to the case of where the underlying asset follows a Poisson jump diffusion.
The HJB VI is normally solved numerically by an implicit method, which gives rise to highly nonlinear discretized algebraic equations. The classic policy iteration approach works well for the Geometric Brownian Motion case. However it is not efficient in some circumstances such as when the underlying asset follows a Poisson jump diffusion process. We develop a combined fixed point policy iteration scheme which significantly increases the efficiency of solving the discretized equations. Sufficient conditions to ensure the convergence of the combined fixed point policy iteration scheme are derived both for the penalty method and direct control method.
The GMWB formulated as a singular control problem has a special structure which results in a block matrix fixed point policy iteration converging about one order of magnitude faster than a full matrix fixed point policy iteration. Sufficient conditions for convergence of the block matrix fixed point policy iteration are derived. Estimates for bounds on the penalty parameter (penalty method) and scaling parameter (direct control method) are obtained so that convergence of the iteration can be expected in the presence of round-off error.
|
3 |
Numerical Methods for Pricing a Guaranteed Minimum Withdrawal Benefit (GMWB) as a Singular Control ProblemHuang, Yiqing January 2011 (has links)
Guaranteed Minimum Withdrawal Benefits(GMWB) have become popular riders on variable annuities. The pricing of a GMWB contract was originally formulated as a singular stochastic control problem which results in a Hamilton Jacobi Bellman (HJB) Variational Inequality (VI). A penalty method method can then be used to solve the HJB VI. We present a rigorous proof of convergence of the penalty method to the viscosity solution of the HJB VI assuming the underlying asset follows a Geometric Brownian Motion. A direct control method is an alternative formulation for the HJB VI. We also extend the HJB VI to the case of where the underlying asset follows a Poisson jump diffusion.
The HJB VI is normally solved numerically by an implicit method, which gives rise to highly nonlinear discretized algebraic equations. The classic policy iteration approach works well for the Geometric Brownian Motion case. However it is not efficient in some circumstances such as when the underlying asset follows a Poisson jump diffusion process. We develop a combined fixed point policy iteration scheme which significantly increases the efficiency of solving the discretized equations. Sufficient conditions to ensure the convergence of the combined fixed point policy iteration scheme are derived both for the penalty method and direct control method.
The GMWB formulated as a singular control problem has a special structure which results in a block matrix fixed point policy iteration converging about one order of magnitude faster than a full matrix fixed point policy iteration. Sufficient conditions for convergence of the block matrix fixed point policy iteration are derived. Estimates for bounds on the penalty parameter (penalty method) and scaling parameter (direct control method) are obtained so that convergence of the iteration can be expected in the presence of round-off error.
|
4 |
Singulární počáteční úloha pro obyčejné diferenciální a integrodiferenciální rovnice / Singular Initial Value Problem for Ordinary Differential and Integrodifferential EquationsArchalousová, Olga January 2011 (has links)
The thesis deals with qualitative properties of solutions of singular initial value problems for ordinary differential and integrodifferential equations which occur in the theory of linear and nonlinear electrical circuits and the theory of therminionic currents. The research is concentrated especially on questions of existence and uniqueness of solutions, asymptotic estimates of solutions and modications of Adomian decomposition method for singular initial problems. Solution algoritms are derived for scalar differential equations of Lane-Emden type using Taylor series and modication of the Adomian decomposition method. For certain classes of nonlinear of integrodifferential equations asymptotic expansions of solutions are constructed in a neighbourhood of a singular point. By means of the combination of Wazewski's topological method and Schauder xed-point theorem there are proved asymptotic estimates of solutions in a region which is homeomorphic to a cone having vertex coinciding with the initial point. Using Banach xed-point theorem the uniqueness of a solution of the singular initial value problem is proved for systems of integrodifferential equations of Volterra and Fredholm type including implicit systems. Moreover, conditions of continuous dependence of a solution on a parameter are determined. Obtained results are presented in illustrative examples.
|
Page generated in 0.0357 seconds