• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maturity and stability evaluation of composted yard debris /

Brewer, Linda J. January 2001 (has links)
Thesis (M.S.)--Oregon State University, 2001. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
2

Nitrogen mineralization from composted and fresh yard trimmings

Nartea, Theresa J. 01 August 2000 (has links)
Graduation date: 2001
3

Food and Yard Waste Compost as a Nutrient Source for Corn Production

Garnett, Angela 14 March 2012 (has links)
Utilizing food and yard waste (FYW) compost for plant production requires determination of application rates that support crop production, improve soil properties and avoid excessive nutrient build-up. An 88 day incubation experiment showed 12 t ha-1 FYW compost to contribute 3.6 kg M3P ha-1 and 0.3 kg mineral N ha-1, 24 t ha-1 supplied 15.1 kg M3P ha-1 and 0.7 kg N ha-1 and 36 t ha-1 gave 39.5 kg M3P ha-1 and 1.2 kg N ha-1 to Pugwash series coarse, loamy soil. A field study showed FYW compost yielded higher P concentrations in grain and stover but lower grain yields than fertilizer. In the residual year, compost treatment yields didn’t decrease and concentrations and amounts of P and N increased. This FYW compost applied to corn at 24 t ha-1 with an N fertilizer can yield similarly to fertilizers only, removing greater amounts of P in grain and stover.
4

Nutrient availability in mineral sand tailings amended with yard waste compost and wood ash /

Mankolo, Regine N., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 62-68). Also available via the Internet.
5

Composting in the Urban Environment Utilizing Yard Waste and Food Waste in Fairfax County, Virginia

Argandona, Walter Solio 21 February 2020 (has links)
Urbanization alters the natural soil structure of landscapes. This has a negative impact on the environment. This degradation of the soil in the urban environment needs management practices that protect and restore the nutrient value in the soil. Soil is one of the most essential elements of landscapes. High quality soils make a major contribution to cleaning water, acting as a filtration system that purifies the water it absorbs. Soil also sustains microorganisms that promote vegetation growth and consequently food production, one of the most important human activities that allows us to thrive as a society. The poor soil conditions in the urban environment make it very difficult to sustain healthy trees and vegetation. Urban soil is "modified through the regrading, compaction, cutting and filling, and, sometimes, contamination that comes with creating buildings, roads and associated land uses", changing the physical, chemical and biological structure of soil. (Trowbridge and Bassuk 3) In general, urban areas require better waste management methods that could use an abundant resource of food and yard waste to make compost. This thesis focuses on composting organic waste in the McNair neighborhood of Fairfax County in order to produce a resource to improve the soil conditions. This improvement would support the vegetation in this urban environment, and, in addition, sequester carbon and divert materials that otherwise would go to landfills. This thesis demonstrates a sustainable method for composting food and yard waste in a mixed-use community in northern Virginia turning waste material into a resource. / Master of Landscape Architecture / The growth of cities has a negative impact on the native soil and vegetation. The expansion of urban areas weakens the microorganisms that live in the soils through soil compaction for the construction of roads and buildings, runoff pollution and the use of chemicals in lawns and gardens. These urban conditions challenge the growth of trees and vegetation in general. Using sustainable waste management practices in cities we can turn organic waste material and turn it into an organic fertilizer to sustain the microorganisms in the soil and promote the growth of vegetation in urban areas. This thesis focuses in composting food waste and yard waste in the McNair neighborhood in Fairfax in order to turn a waste material into a local resource that benefits the community by sustaining green areas and diverting organic waste from going to landfills.
6

Composting in the Urban Environment Utilizing Yard Waste and Food Waste in Fairfax County, Virginia

Argandona, Walter Solio 21 February 2020 (has links)
Urbanization alters the natural soil structure of landscapes. This has a negative impact on the environment. This degradation of the soil in the urban environment needs management practices that protect and restore the nutrient value in the soil. Soil is one of the most essential elements of landscapes. High quality soils make a major contribution to cleaning water, acting as a filtration system that purifies the water it absorbs. Soil also sustains microorganisms that promote vegetation growth and consequently food production, one of the most important human activities that allows us to thrive as a society. The poor soil conditions in the urban environment make it very difficult to sustain healthy trees and vegetation. Urban soil is "modified through the regrading, compaction, cutting and filling, and, sometimes, contamination that comes with creating buildings, roads and associated land uses", changing the physical, chemical and biological structure of soil. (Trowbridge and Bassuk 3) In general, urban areas require better waste management methods that could use an abundant resource of food and yard waste to make compost. This thesis focuses on composting organic waste in the McNair neighborhood of Fairfax County in order to produce a resource to improve the soil conditions. This improvement would support the vegetation in this urban environment, and, in addition, sequester carbon and divert materials that otherwise would go to landfills. This thesis demonstrates a sustainable method for composting food and yard waste in a mixed-use community in northern Virginia turning waste material into a resource. / Master of Landscape Architecture / The growth of cities has a negative impact on the native soil and vegetation. The expansion of urban areas weakens the microorganisms that live in the soils through soil compaction for the construction of roads and buildings, runoff pollution and the use of chemicals in lawns and gardens. These urban conditions challenge the growth of trees and vegetation in general. Using sustainable waste management practices in cities we can turn organic waste material and turn it into an organic fertilizer to sustain the microorganisms in the soil and promote the growth of vegetation in urban areas. This thesis focuses in composting food waste and yard waste in the McNair neighborhood in Fairfax in order to turn a waste material into a local resource that benefits the community by sustaining green areas and diverting organic waste from going to landfills.
7

Sorption and leaching characteristics of heavy metals in artificial soil

Bergsten, Joshua. January 2006 (has links)
Thesis (M.S.) University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 21, 2007) Includes bibliographical references.
8

Bioasphalt and Biochar from Pyrolysis of Urban Yard Waste

Hill, Daniel R. 30 January 2012 (has links)
No description available.
9

Nutrient availability in mineral sand tailings amended with yard waste compost and wood ash

Mankolo, Regine Ndole 10 June 2009 (has links)
Mine tailings result from surface mining coastal plain soils and sediments and are redeposited in a slurry form to the mined area. Mine tailing contains a low amount of organic matter, a low pH, and a high P fixation capacity. This research was carried out in the Atlantic Coastal Plain region to determine if mine tailings reclamation could be accomplished by utilization of yard waste compost and wood ash. Yard waste compost was used to increase the organic matter content and wood to increase pH of the mine tailings. Field research was conducted to determine the effect of yard waste compost and wood ash incorporation into mine tailings on (Zea mays L.) and peanut (Arachis hypogaea) yields. Levels of yard waste compost applied to the mine tailings were 1, 2, 4, 6, 8, and 12% by weight, and wood ash was applied twice at a rate of 2.4 t ha⁻¹. Increases in corn and peanut yields on the mine tailings were attributed to increased available water from the application of yard waste compost and to increased pH from the application of wood ash. Successful use of the yard waste compost and wood ashes for reclamation of the mine tailing is shown by the higher peanut yields on the tailings soils than adjacent natural soils. Although the corn grain yields were relatively high (up to 7830 kg ha⁻¹) where yard waste compost and wood ash were applied to the tailings, the overall corn grain yields were higher on the adjacent natural soil. Probable reasons for lower corn grain on the tailings were inadequate available water at times of maximum need and N and/or P deficiencies. Zinc deficiency was induced in corn plants by the high level of P fertilization required to overcome the high P fixation capacity of the mine tailings. The Zn deficiency could be corrected by either foliar or broadcast-disk in application of ZnSO₄. / Master of Science
10

Anaerobic Digestion of Yard Waste and Biogas Purification by Removal of Hydrogen Sulfide

Cherosky, Phil Boone 22 June 2012 (has links)
No description available.

Page generated in 0.1146 seconds