• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptome-Wide piRNA Profiling in Human Brains for Aging Genetic Factors

Mao, Qiao, Fan, Longhua, Wang, Xiaoping, Lin, Xiandong, Cao, Yuping, Zheng, Chengchou, Zhang, Yong, Zhang, Huihao, Garcia-Milian, Rolando, Kang, Longli, Shi, Jing, Yu, Ting, Wang, Kesheng, Zuo, Lingjun, Li, Chiang-Shan R., Guo, Xiaoyun, Luo, Xingguang 01 January 2019 (has links)
OBJECTIVE: Piwi-interacting RNAs (piRNAs) represent a molecular feature shared by all nonaging biological systems, including the germline and somatic cancer stem cells, which display an indefinite renewal capacity and lifespan-stable genomic integrity and are potentially immortal. Here, we tested the hypothesis that piRNA is a critical genetic determinant of aging in humans. METHODS: Expression of transcriptome-wide piRNAs (n=24k) was profiled in the human prefrontal cortex of 12 subjects (84.9±9.5, range 68-100, years of age) using microarray technology. We examined the correlation between these piRNAs' expression levels and age, adjusting for covariates including disease status. RESULTS: A total of 9,453 piRNAs were detected in brain. Including seven intergenic and three intronic piRNAs, ten piRNAs were significantly associated with age after correction for multiple testing (|r|=0.9; 1.9×10≤p≤9.9×10). CONCLUSION: We conclude that piRNAs might play a potential role in determining the years of survival of humans. The underlying mechanisms might involve the suppression of transposable elements (TEs) and expression regulation of aging-associated genes.

Page generated in 0.0545 seconds