1 |
Lower Semicontinuity and Young Measures for Integral Functionals with Linear GrowthJohan Filip Rindler, Johan Filip January 2011 (has links)
No description available.
|
2 |
Méthodes de volumes finis pour des équations aux dérivées partielles déterministes et stochastiques / Finite volume methods for deterministic and stochastic partial differential equationsGao, Yueyuan 10 December 2015 (has links)
Le but de cette thèse est de faire l'étude de méthodes de volumes finis pour des équations aux dérivées partielles déterministes et stochastiques; nous effectuons des simulations numériques et démontrons des résultats de convergence d'algorithmes.Au Chapitre 1, nous appliquons un schéma semi-implicite en temps combiné avec la méthode de volumes finis généralisés SUSHI pour la simulation d'écoulements à densité variable en milieu poreux; il vient à résoudre une équation de convection-diffusion parabolique pour la concentration couplée à une équation elliptique en pression. Nous présentons ensuite une méthode de simulation numérique pour un problème d'écoulements à densité variable couplé à un transfert de chaleur.Au Chapitre 2, nous effectuons une étude numérique de l'équation de Burgers non visqueuse en dimension un d'espace, avec des conditions aux limites périodiques, un terme source stochastique de moyenne spatiale nulle et une condition initiale déterministe. Nous utilisons un schéma de volumes finis combinant une intégration en temps de type Euler-Maruyama avec le flux numérique de Godunov. Nous effectuons des simulations par la méthode de Monte-Carlo et analysons les résultats pour différentes régularités du terme source. Il apparaît que la moyenne empirique des réalisations converge vers la moyenne en espace de la condition initiale déterministe quand t → ∞. Par ailleurs, la variance empirique converge elle aussi en temps long, vers une valeur qui dépend de la régularité et de l'amplitude du terme stochastique.Au Chapitre 3, nous démontrons la convergence d'une méthode de volumes finis pour une loi de conservation du premier ordre avec une fonction de flux monotone et un terme source multiplicatif faisant intervenir un processus Q-Wiener. Le terme de convection est discrétisé à l'aide d'un schéma amont. Nous présentons des estimations a priori pour la solution discrète dont en particulier une estimation de type BV faible. A l'aide d'une interpolation en temps, nous démontrons deux inégalité entropiques vérifiées par la solution discrète, ce qui nous permet de prouver que la solution discrète converge selon une sous-suite vers une solution stochastique faible entropique à valeurs mesures de la loi de conservation.Au Chapitre 4, nous obtenons des résultats similaires à ceux du Chapitre 3 dans le cas où la fonction flux n'est pas monotone; le terme de convection est discrétisé à l'aide d'un schéma monotone. / This thesis bears on numerical methods for deterministic and stochastic partial differential equations; we perform numerical simulations by means of finite volume methods and prove convergence results.In Chapter 1, we apply a semi-implicit time scheme together with the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; it amounts to solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We then propose a numerical scheme to simulate density driven flows in porous media coupled to heat transfer. We use adaptive meshes, based upon square or cubic volume elements.In Chapter 2, We perform Monte-Carlo simulations in the one-dimensional torus for the first order Burgers equation forced by a stochastic source term with zero spatial integral. We suppose that this source term is a white noise in time, and consider various regularities in space. We apply a finite volume scheme combining the Godunov numerical flux with the Euler-Maruyama integrator in time. It turns out that the empirical mean converges to the space-average of the deterministic initial condition as t → ∞. The empirical variance also stabilizes for large time, towards a limit which depends on the space regularity and on the intensity of the noise.In Chapter 3, we study a time explicit finite volume method with an upwind scheme for a first order conservation law with a monotone flux function and a multiplicative source term involving a Q-Wiener process. We present some a priori estimates including a weak BV estimate. After performing a time interpolation, we prove two entropy inequalities for the discrete solution and show that it converges up to a subsequence to a stochastic measure-valued entropy solution of the conservation law in the sense of Young measures.In Chapter 4, we obtain similar results as in Chapter 3, in the case that the flux function is non-monotone, and that the convection term is discretized by means of a monotone scheme.
|
3 |
Etude d'équations aux dérivées partielles stochastiques / Study on stochastic partial differential equationsBauzet, Caroline 26 June 2013 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles (EDP) non-linéaires stochastiques. Nous nous intéressons à des EDP paraboliques et hyperboliques que l’on perturbe stochastiquement au sens d’Itô. Il s’agit d’introduire l’aléatoire via l’ajout d’une intégrale stochastique (intégrale d’Itô) qui peut dépendre ou non de la solution, on parle alors de bruit multiplicatif ou additif. La présence de la variable de probabilité ne nous permet pas d’utiliser tous les outils classiques de l’analyse des EDP. Notre but est d’adapter les techniques connues dans le cadre déterministe aux EDP non linéaires stochastiques en proposant des méthodes alternatives. Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse : Dans le Chapitre I, nous étudions une perturbation stochastique des équations de Barenblatt. En utilisant une semi- discrétisation implicite en temps, nous établissons l’existence et l’unicité d’une solution dans le cas additif, et grâce aux propriétés de la solution nous sommes en mesure d’étendre ce résultat au cas multiplicatif à l’aide d’un théorème de point fixe. Dans le Chapitre II, nous considérons une classe d’équations de type Barenblatt stochastiques dans un cadre abstrait. Il s’agit là d’une généralisation des résultats du Chapitre I. Dans le Chapitre III, nous travaillons sur l’étude du problème de Cauchy pour une loi de conservation stochastique. Nous montrons l’existence d’une solution par une méthode de viscosité artificielle en utilisant des arguments de compacité donnés par la théorie des mesures de Young. L’unicité repose sur une adaptation de la méthode de dédoublement des variables de Kruzhkov.. Dans le Chapitre IV, nous nous intéressons au problème de Dirichlet pour la loi de conservation stochastique étudiée au Chapitre III. Le point remarquable de l’étude repose sur l’utilisation des semi-entropies de Kruzhkov pour montrer l’unicité. Dans le Chapitre V, nous introduisons une méthode de splitting pour proposer une approche numérique du problème étudié au Chapitre IV, suivie de quelques simulations de l’équation de Burgers stochastique dans le cas unidimensionnel. / This thesis deals with the mathematical field of stochastic nonlinear partial differential equations’ analysis. We are interested in parabolic and hyperbolic PDE stochastically perturbed in the Itô sense. We introduce randomness by adding a stochastic integral (Itô integral), which can depend or not on the solution. We thus talk about a multiplicative noise or an additive one. The presence of the random variable does not allow us to apply systematically classical tools of PDE analysis. Our aim is to adapt known techniques of the deterministic setting to nonlinear stochastic PDE analysis by proposing alternative methods. Here are the obtained results : In Chapter I, we investigate on a stochastic perturbation of Barenblatt equations. By using an implicit time discretization, we establish the existence and uniqueness of the solution in the additive case. Thanks to the properties of such a solution, we are able to extend this result to the multiplicative noise using a fixed-point theorem. In Chapter II, we consider a class of stochastic equations of Barenblatt type but in an abstract frame. It is about a generalization of results from Chapter I. In Chapter III, we deal with the study of the Cauchy problem for a stochastic conservation law. We show existence of solution via an artificial viscosity method. The compactness arguments are based on Young measure theory. The uniqueness result is proved by an adaptation of the Kruzhkov doubling variables technique. In Chapter IV, we are interested in the Dirichlet problem for the stochastic conservation law studied in Chapter III. The remarkable point is the use of the Kruzhkov semi-entropies to show the uniqueness of the solution. In Chapter V, we introduce a splitting method to propose a numerical approach of the problem studied in Chapter IV. Then we finish by some simulations of the stochastic Burgers’ equation in the one dimensional case.
|
Page generated in 0.0602 seconds