• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insights into the control of mRNA decay by YTH proteins during the transition from meiosis to mitosis in yeasts. / Contrôle de la dégradation des ARNm par les protéines YTHpendant la transition de la méiose à la mitose chez les levures.

Hazra, Ditipriya 05 September 2019 (has links)
Aperçu du contrôle de la dégradation des ARNm par les protéines YTHpendant la transition de la méiose à la mitose chez les levures.Le cycle cellulaire est contrôlé par des processus complexes et interconnectés. Un gène est transcrit en ARNm qui est traduit en protéines mais de nombreux processus de régulation travaillent pour contrôler chaque étape de ce processus apparemment simple. Parmi ces points de contrôle, la régulation post-transcriptionnelle est importante, et la formation d'un complexe protéine-ARN peut diriger le destin cellulaire. Parmi ces protéines de liaison à l'ARN, les protéines contenant des domaines YTH n’ont été découvertes qu’à la fin des années 90. Les protéines contenant des domaines YTH sont abondantes chez les eucaryotes et absentes chez les procaryotes. Elles constituent la majorité des protéines « readers » capables de reconnaître spécifiquement la modification m6A. L’Homme possède cinq protéines YTH, YTHDF1-3, YTHDC1,2 (Hazra, D., C. Chapat, et Graille, M. (2019). Destin de l'ARNm de m6A : enchaînés au rythme par les protéines contenant de la YTH. , 10 (1), 49.). Bien qu'il soit évident que ces protéines contrôlent le destin cellulaire, la fonction de chaque protéine et son réseau d’interaction restent à élucider. Chez les levures, une seule protéine YTH est présente: Pho92 chez Saccharomyces cerevisiae et Mmi1 chez Schizosaccharomyces pombe. Hormis le domaine YTH, il n'y a pas d'homologie de séquence entre ces deux protéines mais leur fonction cellulaire est similaire.Il est bien établi que Mmi1 est responsable de la dégradation des transcrits spécifiques de la méiose au cours de la croissance végétative des cellules chez la levure S. pombe. Mmi1 forme un complexe stable avec une petite protéine, Erh1 (complexe Erh1-Mmi1 ou EMC). Le complexe EMC peut physiquement interagir avec la sous-unité Not1 du complexe CCR4-Not et la recruter pour la dégradation des ARNm contenant des motifs DSR (déterminant de l'élimination sélective). L'action de Mmi1 est à son tour régulée par une protéine possédant un domaine RRM, Mei2. Au cours de la méiose, Mei2, avec l’aide d’un lncRNA meiRNA, séquestre Mmi1 dans un point nucléaire, le rendant inactif et assurant la continuité de la méiose. Ces trois protéines, Mmi1-Erh1-Mei2, jouent un rôle clé dans la transition de la mitose vers la méiose.Chez S. cerevisiae, Pho92 est impliquée dans la dégradation des transcrits de PHO4, contribuant à la voie du métabolisme du phosphate, pendant la privation en phosphate et participe également à la dégradation des ARNm contenant les marques épitranscriptomiques de N6-méthyladénosine (m6A). Comme pour S. pombe Mmi1, Pho92 recrute le complexe CCR4-Not via une interaction physique avec Not1.Au cours de ma thèse, j'ai tenté d'élucider le rôle de ces deux protéines du domaine YTH de deux organismes modèles, S. cerevisiae et S. pombe, dans la dégradation de l'ARNm et la régulation du cycle cellulaire par des approches biochimiques et structurales.Pho92 de S. cerevisiae interagit physiquement avec Not1 du complexe CCR4-Not, nous avons pu déterminer les limites des domaines impliqués dans cette interaction. L’interaction entre ces deux protéines a été étudiée par anisotropie de fluorescence. Le complexe protéique a été purifié avec succès et des essais de cristallisation sont en cours.Chez S. pombe, la structure de Mei2-RRM3 a été résolue avec et sans ARN. Les propriétés de liaison à l'ARN de Mei2-RRM3 ont été étudiées par ITC. La structure de Erh1 a également été résolue révélant une organisation en homodimere. Nous avons montré que la formation de cet homodimere est important pour la fonction biologique de Mmi1. Des essais de co-cristallisation ont été réalisés avec de l'ARN et les protéines Mmi1 et Mei2, mais sans succès et nous avons obtenu des cristaux de Mmi1. / Insights into the control of mRNA decay by YTH proteinsduring the transition from meiosis to mitosis in yeasts.Keywords: Epitranscriptomics, mRNA decay, meiosis, multi-protein complexes, YTH domainCell cycle is controlled by multi-layered processes. A gene is transcribed in mRNA which is translated in proteins but innumerable regulation processes are working to control every step of this apparently simple process. Among these regulatory check points, post-transcriptional regulation is an important one, where formation of a protein-RNA complex may direct the cellular fate. Among these RNA binding proteins, YTH domain proteins are most novel, discovered in late 90s. YTH domain proteins are abundant in eukaryotes and absent in prokaryotes. YTH domain proteins constitute the majority of reader proteins that can specifically identify m6A modification. Human beings have five YTH domain proteins YTHDF1-3, YTHDC1-2 (Hazra, D., Chapat, C., & Graille, M. (2019). m6A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins. Genes, 10(1), 49.). Although it is evident that these proteins are controlling cellular fate, the function of each protein and their network is yet to be elucidated. In yeast, there is only one YTH domain protein present: Pho92 in Saccharomyces cerevisiae and Mmi1 in Schizosaccharomyces pombe. Apart from the YTH domain there is no sequence homology between these two proteins but their cellular function is similar.It is well established that Mmi1 is responsible for degradation of meiosis specific transcripts during vegetative growth of the cell. Mmi1 forms a tight complex with a small protein, Erh1 (Erh1-Mmi1 complex or EMC). EMC can physically interact with Not1 of CCR4-Not complex and recruit it for degradation of DSR (determinant of selective removal) containing RNAs. The action of Mmi1 is in turn regulated by an RRM domain protein, Mei2. During meiosis, Mei2, along with a lncRNA meiRNA sequesters Mmi1 in a nuclear dot, rendering it inactive and ensuring smooth continuance of meiosis. These three proteins, Mmi1-Erh1-Mei2 play a key role in mitosis to meiosis switch.In S. cerevisiae, Pho92 is involved in the degradation of PHO4 transcripts contributing to phosphate metabolism pathway, during phosphate starvation and also participates in the degradation of mRNAs containing the N6-methyladenosine (m6A) epitranscriptomics marks. Similarly, to S. pombe Mmi1, Pho92 recruits CCR4-Not complex by physical interaction with Not1.During my PhD, I have tried to elucidate the role of these two YTH domain proteins from two model organisms, S. cerevisiae and S. pombe, in mRNA degradation and cell cycle regulation using biochemical and structural approaches.Pho92 of S. cerevisiae physically interacts with Not1 of CCR4-Not complex, we were able to determine the boundaries of this interaction. The interaction between these two proteins was studied by Fluorescence anisotropy. The protein complex was successfully purified and crystallization trials are ongoing.From S. pombe, structure of Mei2-RRM3 was solved with and without an RNA. RNA binding properties of Mei2-RRM3 was studied by ITC. The structure of Erh1 was also solved and we tried to elucidate its importance for biological function of Mmi1. A co-crystallization trial was performed with Mmi1-Mei2-RNA but it was unsuccessful and we ended up with Mmi1 crystals.
2

Caractérisation fonctionnelle de la protéine ECT2 comme lecteur de la modification N6-méthyladénosine des ARN messagers chez la plante Arabidopsis thaliana / Functional characterization of the ECT2 protein as a reader of the N6-methyladenosine mRNA modification from the plant Arabidopsis thaliana

Scutenaire, Jérémy 14 December 2017 (has links)
Le contrôle de l’expression des gènes est un processus crucial pour le développement, la reproduction ou les mécanismes d’acclimatation aux stress environnementaux et met en jeu des voies de régulation post-transcriptionnelles agissant sur les ARN messagers (ARNm). Ces molécules portent des modifications chimiques dont l’une des plus abondantes est la N6-méthyladénosine ou m6A. Cette modification permet notamment d’attirer des protéines spécifiques qualifiées de « lecteurs » qui, chez les mammifères, agissent principalement pour favoriser la dégradation et/ou la traduction des ARNm. Mes travaux de thèse ont eu pour objectif de caractériser les fonctions d’un de ces lecteurs, nommé ECT2, chez la plante modèle Arabidopsis thaliana. Dans un premier temps, sa fonction de liaison aux ARNm méthylés ainsi que son rôle dans le développement de la plante ont été démontrés. Au niveau moléculaire, une approche de protéomique a permis d’identifier de nombreux partenaires d’ECT2 dont la majorité est impliquée dans le métabolisme des ARNm parmi lesquels des facteurs inhibiteurs de traduction. Les résultats d’une analyse de translatomique permettent de proposer un modèle où ECT2 jouerait un rôle de répresseur de la traduction d’ARNm en coopération avec ses partenaires LARP1 et DCP5, deux facteurs évolutivement conservés qui agissent dans le contrôle de la traduction des ARNm. Enfin, j’ai également découvert que la protéine ECT2 est dynamiquement modifiée via des phosphorylations en réponse à un stress thermique, ce qui semble notamment affecter sa capacité à reconnaitre les résidus m6A. Ces travaux suggèrent pour la première fois que l’activité d’un lecteur peut être régulée par des phosphorylations en réponse à des variations environnementales. / Control of gene expression is a crucial process for development, reproduction or acclimation to environmental stresses and involves post-transcriptional regulatory pathways acting on messenger RNAs (mRNAs). These molecules carry chemical modifications of which N6-methyladenosine (m6A) is one of the most abundant. This modification allows notably the recruitment of specific proteins qualified as “readers” which, in mammals, mostly act to promote decay and/or translation of mRNAs. My thesis aimed to characterize the functions of one of these readers, named ECT2, in the model plant Arabidopsis thaliana. First, its binding function to methylated mRNAs and its role in plant development was demonstrated. At the molecular level, a proteomic approach identified numerous ECT2’s protein partners, mainly involved in mRNA metabolism including translation inhibition factors. Results obtained from a translatome analysis suggest a model where ECT2 could play a repressive role on the translation of methylated mRNAs cooperatively with its partners LARP1 and DCP5, two evolutionarily conserved factors acting in translational control of mRNAs. Finally, I also discovered that ECT2 is dynamically modified with phosphorylations in response to heat stress affecting especially its ability to recognize m6A residues. These works suggests for the first time that the activity of an m6A reader could be regulated by phosphorylations in response to environmental changes.

Page generated in 0.0432 seconds