• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epitranscriptomic mediators of environmental impacts on mouse behaviours / マウス行動における環境の影響はエピトランスクリプトームにより媒介される

Sukegawa, Momoe 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第24756号 / 生博第497号 / 新制||生||66(附属図書館) / 京都大学大学院生命科学研究科高次生命科学専攻 / (主査)教授 北島 智也, 教授 見学 美根子, 教授 今吉 格 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DGAM
2

Novel insights into the function and regulation of coding and long non-coding RNAs

de Bony, Eric James 15 March 2018 (has links) (PDF)
Le dogme central de la biologie repose sur la production de protéines à partir de notre ADN. L’ADN est d’abord transcrit en ARN et celui-ci est ensuite traduit en protéine. C’est donc en cette dernière qu’est localisé le “pouvoir exécutif” de la cellule, ce qui explique le fait que les protéines soient devenues le centre d’attention de la recherche. L’ARN, quant à lui, est donc depuis longtemps considéré comme une molécule intermédiaire, dont l’unique raison d’être est le transfert d’information entre l’ADN et les protéines. Pourtant, ces dernières années, les avancées technologiques ont révélé qu’une majeure partie de notre génome, notre ADN, est transcrit en ARNs dits « noncodants » ne donnant pas lieu à une protéine. Ceux-ci sont impliqués dans de nombreux processus cellulaires et de ce fait participent aux pathologies. D’autre part, de nouvelles technologies ont aussi mené à l’observation que le métabolisme des ARNs, codants ou non, est la cible de nouveaux mécanismes de régulation: les modifications chimiques des ribonucléosides. Analysées de manière conjointe, ces découvertes poussent à la révision du rôle des ARNs au sein des processus cellulaires. Dès lors, dans le cadre de cette thèse nous avons voulu mieux comprendre la fonction et la régulation des molécules d’ARN afin d’en révéler le rôle plus central qu’ils jouent dans les processus cellulaire et en particulier, la cancérogenèse. Pour ce faire cette thèse comporte deux parties, la première décrit comment certains ARNs, dit “longs ARNs non-codants” participent au développement et à l’hétérogénéité du cancer colorectal. En effet ces ARNs exercent des fonctions “exécutives” sans être la source d’une protéine. Nous avons identifié 282 long ARNs non-codants dont les profils d’expression reflètent les différentes caractéristiques rencontrées au travers des différents sous-types de tumeurs colorectales. De plus, nos analyses informatiques ont indiqué que ces ARNs font partie intégrante des réseaux de signalisations les plus importants et les plus souvent dérégulés dans les différents sous-types que présente ce cancer. Enfin, et ce via des expériences in vitro nous soutenons la validité de nos analyses informatiques en confirmant le rôle de lncBLID-5, un long ARN non-codant, dans la régulation du cycle cellulaire et de la transition épithéliale vers mésenchymale un processus cellulaire très important dans les cancers colorectaux. Dans la deuxième partie nous avons étudié la méthylation des cytosines de l’ARN, une modification très récemment identifiée. Nous avons découvert que la protéine SRSF2, un facteur général de l’épissage des ARNs, est capable de se lier aux cytosines méthylées et ce plus fortement qu’aux cytosines non-méthylées. Enfin, nous montrons que la mutation P95H de SRSF2, très fréquente chez les patients atteints de leucémie, empêche SRSF2 de favoriser sa liaison aux cytosines méthylées laissant entrevoir de nouvelles explications à l’épissage défectueux conduisant à ce type de cancer. En conclusion nos travaux apportent de nouvelles informations quant à l’implication et la régulation des ARNs codants et non-codants dans le cadre du cancer. Ces résultats devraient nous mener à revoir le rôle qu’occupe l’ARN au sein des processus cellulaires sains ainsi que pathologiques, ouvrant la porte sur une nouvelle dimension de cibles diagnostiques et thérapeutiques. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
3

METABOLIC CONTROL OF THE EPIGENOME IN GLIOBLASTOMA STEM CELLS

Kim, Jin Young Leo January 2019 (has links)
No description available.
4

Insights into the control of mRNA decay by YTH proteins during the transition from meiosis to mitosis in yeasts. / Contrôle de la dégradation des ARNm par les protéines YTHpendant la transition de la méiose à la mitose chez les levures.

Hazra, Ditipriya 05 September 2019 (has links)
Aperçu du contrôle de la dégradation des ARNm par les protéines YTHpendant la transition de la méiose à la mitose chez les levures.Le cycle cellulaire est contrôlé par des processus complexes et interconnectés. Un gène est transcrit en ARNm qui est traduit en protéines mais de nombreux processus de régulation travaillent pour contrôler chaque étape de ce processus apparemment simple. Parmi ces points de contrôle, la régulation post-transcriptionnelle est importante, et la formation d'un complexe protéine-ARN peut diriger le destin cellulaire. Parmi ces protéines de liaison à l'ARN, les protéines contenant des domaines YTH n’ont été découvertes qu’à la fin des années 90. Les protéines contenant des domaines YTH sont abondantes chez les eucaryotes et absentes chez les procaryotes. Elles constituent la majorité des protéines « readers » capables de reconnaître spécifiquement la modification m6A. L’Homme possède cinq protéines YTH, YTHDF1-3, YTHDC1,2 (Hazra, D., C. Chapat, et Graille, M. (2019). Destin de l'ARNm de m6A : enchaînés au rythme par les protéines contenant de la YTH. , 10 (1), 49.). Bien qu'il soit évident que ces protéines contrôlent le destin cellulaire, la fonction de chaque protéine et son réseau d’interaction restent à élucider. Chez les levures, une seule protéine YTH est présente: Pho92 chez Saccharomyces cerevisiae et Mmi1 chez Schizosaccharomyces pombe. Hormis le domaine YTH, il n'y a pas d'homologie de séquence entre ces deux protéines mais leur fonction cellulaire est similaire.Il est bien établi que Mmi1 est responsable de la dégradation des transcrits spécifiques de la méiose au cours de la croissance végétative des cellules chez la levure S. pombe. Mmi1 forme un complexe stable avec une petite protéine, Erh1 (complexe Erh1-Mmi1 ou EMC). Le complexe EMC peut physiquement interagir avec la sous-unité Not1 du complexe CCR4-Not et la recruter pour la dégradation des ARNm contenant des motifs DSR (déterminant de l'élimination sélective). L'action de Mmi1 est à son tour régulée par une protéine possédant un domaine RRM, Mei2. Au cours de la méiose, Mei2, avec l’aide d’un lncRNA meiRNA, séquestre Mmi1 dans un point nucléaire, le rendant inactif et assurant la continuité de la méiose. Ces trois protéines, Mmi1-Erh1-Mei2, jouent un rôle clé dans la transition de la mitose vers la méiose.Chez S. cerevisiae, Pho92 est impliquée dans la dégradation des transcrits de PHO4, contribuant à la voie du métabolisme du phosphate, pendant la privation en phosphate et participe également à la dégradation des ARNm contenant les marques épitranscriptomiques de N6-méthyladénosine (m6A). Comme pour S. pombe Mmi1, Pho92 recrute le complexe CCR4-Not via une interaction physique avec Not1.Au cours de ma thèse, j'ai tenté d'élucider le rôle de ces deux protéines du domaine YTH de deux organismes modèles, S. cerevisiae et S. pombe, dans la dégradation de l'ARNm et la régulation du cycle cellulaire par des approches biochimiques et structurales.Pho92 de S. cerevisiae interagit physiquement avec Not1 du complexe CCR4-Not, nous avons pu déterminer les limites des domaines impliqués dans cette interaction. L’interaction entre ces deux protéines a été étudiée par anisotropie de fluorescence. Le complexe protéique a été purifié avec succès et des essais de cristallisation sont en cours.Chez S. pombe, la structure de Mei2-RRM3 a été résolue avec et sans ARN. Les propriétés de liaison à l'ARN de Mei2-RRM3 ont été étudiées par ITC. La structure de Erh1 a également été résolue révélant une organisation en homodimere. Nous avons montré que la formation de cet homodimere est important pour la fonction biologique de Mmi1. Des essais de co-cristallisation ont été réalisés avec de l'ARN et les protéines Mmi1 et Mei2, mais sans succès et nous avons obtenu des cristaux de Mmi1. / Insights into the control of mRNA decay by YTH proteinsduring the transition from meiosis to mitosis in yeasts.Keywords: Epitranscriptomics, mRNA decay, meiosis, multi-protein complexes, YTH domainCell cycle is controlled by multi-layered processes. A gene is transcribed in mRNA which is translated in proteins but innumerable regulation processes are working to control every step of this apparently simple process. Among these regulatory check points, post-transcriptional regulation is an important one, where formation of a protein-RNA complex may direct the cellular fate. Among these RNA binding proteins, YTH domain proteins are most novel, discovered in late 90s. YTH domain proteins are abundant in eukaryotes and absent in prokaryotes. YTH domain proteins constitute the majority of reader proteins that can specifically identify m6A modification. Human beings have five YTH domain proteins YTHDF1-3, YTHDC1-2 (Hazra, D., Chapat, C., & Graille, M. (2019). m6A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins. Genes, 10(1), 49.). Although it is evident that these proteins are controlling cellular fate, the function of each protein and their network is yet to be elucidated. In yeast, there is only one YTH domain protein present: Pho92 in Saccharomyces cerevisiae and Mmi1 in Schizosaccharomyces pombe. Apart from the YTH domain there is no sequence homology between these two proteins but their cellular function is similar.It is well established that Mmi1 is responsible for degradation of meiosis specific transcripts during vegetative growth of the cell. Mmi1 forms a tight complex with a small protein, Erh1 (Erh1-Mmi1 complex or EMC). EMC can physically interact with Not1 of CCR4-Not complex and recruit it for degradation of DSR (determinant of selective removal) containing RNAs. The action of Mmi1 is in turn regulated by an RRM domain protein, Mei2. During meiosis, Mei2, along with a lncRNA meiRNA sequesters Mmi1 in a nuclear dot, rendering it inactive and ensuring smooth continuance of meiosis. These three proteins, Mmi1-Erh1-Mei2 play a key role in mitosis to meiosis switch.In S. cerevisiae, Pho92 is involved in the degradation of PHO4 transcripts contributing to phosphate metabolism pathway, during phosphate starvation and also participates in the degradation of mRNAs containing the N6-methyladenosine (m6A) epitranscriptomics marks. Similarly, to S. pombe Mmi1, Pho92 recruits CCR4-Not complex by physical interaction with Not1.During my PhD, I have tried to elucidate the role of these two YTH domain proteins from two model organisms, S. cerevisiae and S. pombe, in mRNA degradation and cell cycle regulation using biochemical and structural approaches.Pho92 of S. cerevisiae physically interacts with Not1 of CCR4-Not complex, we were able to determine the boundaries of this interaction. The interaction between these two proteins was studied by Fluorescence anisotropy. The protein complex was successfully purified and crystallization trials are ongoing.From S. pombe, structure of Mei2-RRM3 was solved with and without an RNA. RNA binding properties of Mei2-RRM3 was studied by ITC. The structure of Erh1 was also solved and we tried to elucidate its importance for biological function of Mmi1. A co-crystallization trial was performed with Mmi1-Mei2-RNA but it was unsuccessful and we ended up with Mmi1 crystals.
5

Insights into the Molecular Mechanisms of the N6-Methyladenosine (m6A) Methylation Machinery in the Regulation of the Infection Cycle of RNA Plant Viruses

Alvarado Marchena, Luis Fernando 01 September 2022 (has links)
[ES] La N6-metiladenosina (m6A) es una modificación generalizada en los ARN celulares de diferentes organismos que puede afectar muchos procesos y vías celulares. En las plantas, ocurre mediante un complejo de metilación que contiene varias proteínas: MTA, MTB, FIP37, VIR y HAKAI. Esta modificación es eliminada por desmetilasas de la familia AlkB, mientras que los miembros de la familia ETC son las proteínas mejor descritas que reconocen y procesan los ARN m6A-modificados. Estudios de epitransciptómica viral han revelado un papel igualmente importante de m6A durante la infección por virus; sin embargo, no existe una función pro- o antiviral de m6A generalizada. El laboratorio donde se ha llevado a cabo este trabajo ha sido pionero en el estudio del efecto de m6A en la interacción planta-virus, utilizando como virus modelo el AMV. El AMV pertenece a la familia Bromoviridae, y su genoma está formado por tres (+)ssARN. Los ARN1/2 codifican las subunidades de replicasa (P1 y P2), mientras que el ARN3 codifica la proteína de movimiento (MP) y sirve como molde para la síntesis del sgARN4, que codifica la proteína de cubierta (CP). Al comienzo de esta tesis, nuestro laboratorio ya había informado sobre: la presencia de supuestos motivos m6A en el 3'UTR/RNA3, una región crítica para la replicación de AMV, la primera m6A-desmetilasa de Arabidopsis (ALKBH9B), la relevancia funcional de ALKBH9B para mantener niveles adecuados de m6A/A para la correcta replicación de AMV, la capacidad de la CP de AMV para interactuar con ALKBH9B, posiblemente para usurpar la actividad de ALKBH9B, y la capacidad de las proteínas de Arabidopsis ECT2/3/5 para interactuar con el ARNv de AMV que contienen m6A. Dada la relevancia funcional de m6A en la biología de AMV, en esta tesis se decidió profundizar en el conocimiento de las implicaciones del mecanismo de regulación de m6A en el ciclo infeccioso viral de AMV. Para ello, se decidió: profundizar en la comprensión funcional de la m6A-desmetilasa ALKBH9B, evaluar la función in vivo de los supuestos dos sitios m6A presentes en el 3'UTR/ARN3, y explorar una posible implicación de algunas m6A metiltransferasas en la infección causada por AMV. El mapeo de los subdominios funcionales de atALKBH9B determinó la presencia de IDRs en la región N-terminal, dentro del dominio interno similar a AlkB y en la región C-terminal. Alrededor del 78% del RBD identificado en ALKBH9B está contenido en el IDR C-terminal. Debido a que las IDRs se localizan con frecuencia en proteínas que se someten a LLPS, un proceso que probablemente contribuye a la formación y estabilidad de los gránulos de ARN, es posible que las IDR y la RBD de ALKBH9B puedan actuar de manera cooperativa para promover la formación de gránulos de ARN. El análisis de los putativos motivos DRACH localizados en el bucle de hpB y en el tallo inferior de hpE del 3'UTR/ARN3 de AMV demostró que son sitios críticos involucrados en la replicación in vivo de AMV. La identidad de los residuos 2012A, 2013A y 2014A en el bucle hpB parece ser un requisito estructural clave para la replicación y/o acumulación de AMV. Con respecto a hpE, nuestros resultados determinaron que el supuesto residuo de m6A (1902A), así como el apareamiento de bases del tallo inferior de hpE, también son requisitos esenciales para la síntesis in vivo de ARNs de cadena positiva en AMV. Hasta donde sabemos, esta es la primera evidencia en AMV que muestra que el bucle de hpB y el tallo inferior de hpE están involucrados en la replicación/acumulación viral y la síntesis de ARNs de cadena positiva, respectivamente. Finalmente, en cuanto al estudio de la influencia de las m6A-metiltransferasas en el ciclo de infección viral de AMV, no se determinó un efecto proviral y/o antiviral en el complejo m6A-ARNm metiltransferasa conformado por atMTA:atMTB, ni en el putativo complejo m6A- ARNr metiltransferasa conformado por atMETTL5-like:atTRMT112-like sobre la biología de AMV. / [CA] La N6-metiladenosina (m6A) és una modificació generalitzada en els ARN cellulars de diferents organismes que pot afectar molts processos i vies cellulars. En les plantes, ocorre mitjançant un complex de metilació que conté diverses proteïnes: MTA, MTB, FIP37, VIR i HAKAI. Aquesta modificació és eliminada per desmetilasas de la família AlkB, mentre que els membres de la família ETC són les proteïnes més ben descrites que reconeixen i processen els ARN m6A-modificats. Estudis de epitransciptómica viral han revelat un paper igualment important de m6A durant la infecció per virus; no obstant això, no existeix una funció pro- o antiviral de m6A generalitzada. El laboratori on s'ha dut a terme aquest treball ha sigut pioner en l'estudi de l'efecte de m6A en la interacció planta-virus, utilitzant com a virus model el AMV. El AMV pertany a la família Bromoviridae, i el seu genoma està format per tres (+) ssARN. Els ARN1/2 codifiquen les subunitats de replicasa (P1 i P2), mentre que l'ARN3 codifica la MP i serveix com a motle per a la síntesi del sgARN4, que codifica la CP. Al començament d'aquesta tesi, el nostre laboratori ja havia informat sobre: la presència de suposats motius m6A en el 3'UTR/RNA3, una regió crítica per a la replicació de AMV, la primera m6A-desmetilasa de Arabidopsis (ALKBH9B), la rellevància funcional d'ALKBH9B per a mantindre nivells adequats de m6A/A per a la correcta replicació de AMV, la capacitat de la CP de AMV per a interactuar amb ALKBH9B, possiblement per a usurpar l'activitat d'ALKBH9B, i la capacitat de les proteïnes de Arabidopsis ECT2/3/5 per a interactuar amb el ARNv de AMV que contenen m6A. Donada la rellevància funcional de m6A en la biologia de AMV, en aquesta tesi es va decidir aprofundir en el coneixement de les implicacions del mecanisme de regulació de m6A en el cicle infecciós viral de AMV. Per a això, es va decidir: aprofundir en la comprensió funcional de la m6A-desmetilasa ALKBH9B, avaluar la funció in vivo dels supòsits dos llocs m6A presents en el 3'UTR/ARN3, i explorar una possible implicació d'algunes m6A metiltransferasas en la infecció causada per AMV. El mapatge dels subdominis funcionals de atALKBH9B va determinar la presència de IDRs a la regió N-terminal, dins del domini intern similar a AlkB i a la regió C-terminal. Al voltant del 78% del RBD identificat en ALKBH9B està contingut en el IDR C-terminal. Pel fet que les IDRs es localitzen amb freqüència en proteïnes que se sotmeten a LLPS, un procés que probablement contribueix a la formació i estabilitat dels grànuls d'ARN, és possible que les IDR i la RBD d'ALKBH9B puguen actuar de manera cooperativa per a promoure la formació de grànuls d'ARN. L'anàlisi dels putatius motius DRACH localitzats en el bucle de hpB i en la tija inferior de hpE del 3'UTR/ARN3 de AMV va demostrar que són llocs crítics involucrats en la replicació in vivo de AMV. La identitat dels residus 2012A, 2013A i 2014A en el bucle hpB sembla ser un requisit estructural clau per a la replicació i/o acumulació de AMV. Respecte a hpE, els nostres resultats van determinar que el suposat residu de m6A (1902A), així com l'aparellament de bases de la tija inferior de hpE, també són requisits essencials per a la síntesi in vivo de ARNs de cadena positiva en AMV. Fins on sabem, aquesta és la primera evidència en AMV que mostra que el bucle de hpB i la tija inferior de hpE estan involucrats en la replicació/acumulació viral i la síntesi de ARNs de cadena positiva, respectivament. Finalment, quant a l'estudi de la influència de les m6A-metiltransferasas en el cicle d'infecció viral de AMV, no es va determinar un efecte proviral i/o antiviral en el complex m6A-ARNm metiltransferasa conformat per atMTA:atMTB, ni en el putatiu complex m6A-ARNr metiltransferasa conformat per atMETTL5-like:atTRMT112-like sobre la biologia de AMV. / [EN] N6-methyladenosine (m6A) is a widespread modification on cellular RNAs of different organisms that can impact many cellular processes and pathways. In plants, m6A-methylation is mainly installed by a methylation complex containing several proteins: MTA, MTB, FIP37, VIR, and HAKAI. This modification is removed by demethylases of the AlkB family, and members of the ECT family are the best described proteins that recognize and process m6A-modified RNAs. Studies of viral epitransciptomics have revealed an equally important role of m6A during virus infection; however, there is no global pro- or antiviral role of m6A that can be generalized. The laboratory where this work was carried out has been a pioneer in the study of the effect of m6A on plant-viruses, using AMV as a model-virus. AMV belongs to the Bromoviridae family and, as the rest of the members of this family, its genome consists of three (+)ssRNAs. RNA1 and RNA2 encode the replicase subunits (P1 and P2), whereas RNA 3 encodes the MP and serves as a template for the synthesis of sgRNA 4, which encodes CP. At the beginning of this thesis, our laboratory had already reported on: the presence of putative m6A-motifs in the 3'UTR RNA3, a critical region for AMV replication, the first Arabidopsis m6A-demethylase (ALKBH9B), the functional relevance of ALKBH9B to maintain adequate m6A/A levels for correct AMV replication, the ability of AMV-CP to interact with ALKBH9B, possibly to usurp ALKBH9B activity, and the capability of Arabidopsis ECT2/3/5 to interact with m6A-containing AMV vRNAs. Given the functional relevance of m6A on the biology of AMV, in this thesis it was decided to deepen the knowledge of the implications of the m6A regulation mechanism on the viral infectious cycle of AMV. For this, it was decided: deepen the functional understanding of the m6A-demethylase ALKBH9B, evaluate the in vivo function of the putative two m6A-sites present in the 3'UTR-RNA 3, and explore a possible involvement of some m6A-methyltransferases in infection caused by AMV. We mapped functional subdomains in the atALKBH9B m6A-demethylase required for its binding to the vRNA and to the CP of AMV. Remarkably, it was observed the presence of IDRs in the N-terminal region, within the internal domain like AlkB and in the C-terminal region. About 78% of the RBD identified in ALKBH9B is contained in the C-terminal IDR. In this context, it has been proposed that the capability to specifically target different RNAs in RBPs containing IDRs is due to conformational flexibility as well as the establishment of extended conserved electrostatic interfaces with RNAs. Additionally, due that IDRs are frequently localized in proteins that undergo LLPS, a process that likely contributes to the formation and stability of RNA granules, it's possible that the IDRs and the RBD of ALKBH9B could act cooperatively to promote RNA granule formation. The analysis of the putative DRACH-motifs located in the hpB loop and the lower-stem of hpE in the 3'UTR RNA 3 present hot sites involved in AMV replication in vivo. The identity of residues 2012A, 2013A and 2014A in the hpB loop appears to be a key structural requirement for AMV replication and/or accumulation. Regarding hpE, our results determined that the putative m6A-residue 1902A, as well as the base pairing of the lower-stem of hpE, are also essential requirements for the in vivo plus-strand synthesis in AMV. To our knowledge, this is the first evidence in AMV to show that the hpB loop and the lower-stem of hpE are involved in viral replication/accumulation and plus-strand synthesis, respectively. Finally, regarding the study of the influence of m6A-methyltransferases on the viral infection cycle of AMV, a non-proviral and/or antiviral effect was determined in the m6A-mRNA methyltransferase complex made up of atMTA:atMTB, nor of the putative m6A-rRNA methyltransferase complex made up of atMETTL5-like:atTRMT112-like on the biology of AMV. / Alvarado Marchena, LF. (2022). Insights into the Molecular Mechanisms of the N6-Methyladenosine (m6A) Methylation Machinery in the Regulation of the Infection Cycle of RNA Plant Viruses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185122 / TESIS

Page generated in 0.0646 seconds