• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maximale Kantengewichte zusammenhängender Graphen

Petzold, Maria 26 June 2012 (has links) (PDF)
Das Gewicht einer Kante e = xy eines Graphen G = (V, E) ist definiert als Summe der Grade seiner Endpunkte und das Gewicht des Graphen als MInimum über alle Kantengewichte. Wir suchen für positive ganze Zahlen n,m und eine Grapheneigenschaft P den Wert: w(n,m, P) := max{w(G) : |V(G)| = n, |E(G)| = m,G in P}. Der ungarische Mathematiker Erdös formulierte 1990 auf dem Czecheslovak Symposium on Combinatorics, Graphs and Complexity die Problemstellung w(n,m, I) zu bestimmen, für die allgemeinste aller Graphenklassen I. Dieses Problem wurde zuerst teilweise von Invančo and Jendrol’ und dann endgültig von Jendrol’ and Schiermeyer gelöst. Sei G in der Graphenklasse C genau dann wenn G zusammenhängend ist. In dieser Arbeit werden Ansätze zur Bestimmung von w(n,m,C) vorgestellt. Im Speziellen betrachten wir Graphen mit bis zu 3n − 6 Kanten, sowie sehr dichte Graphen. Außerdem diskutieren wir einige verallgemeinerte Fragestellungen.
2

Maximale Kantengewichte zusammenhängender Graphen

Petzold, Maria 13 June 2012 (has links)
Das Gewicht einer Kante e = xy eines Graphen G = (V, E) ist definiert als Summe der Grade seiner Endpunkte und das Gewicht des Graphen als MInimum über alle Kantengewichte. Wir suchen für positive ganze Zahlen n,m und eine Grapheneigenschaft P den Wert: w(n,m, P) := max{w(G) : |V(G)| = n, |E(G)| = m,G in P}. Der ungarische Mathematiker Erdös formulierte 1990 auf dem Czecheslovak Symposium on Combinatorics, Graphs and Complexity die Problemstellung w(n,m, I) zu bestimmen, für die allgemeinste aller Graphenklassen I. Dieses Problem wurde zuerst teilweise von Invančo and Jendrol’ und dann endgültig von Jendrol’ and Schiermeyer gelöst. Sei G in der Graphenklasse C genau dann wenn G zusammenhängend ist. In dieser Arbeit werden Ansätze zur Bestimmung von w(n,m,C) vorgestellt. Im Speziellen betrachten wir Graphen mit bis zu 3n − 6 Kanten, sowie sehr dichte Graphen. Außerdem diskutieren wir einige verallgemeinerte Fragestellungen.
3

Proper connection number of graphs

Doan, Trung Duy 16 August 2018 (has links)
The concept of \emph{proper connection number} of graphs is an extension of proper colouring and is motivated by rainbow connection number of graphs. Let $G$ be an edge-coloured graph. Andrews et al.\cite{Andrews2016} and, independently, Borozan et al.\cite{Borozan2012} introduced the concept of proper connection number as follows: A coloured path $P$ in an edge-coloured graph $G$ is called a \emph{properly coloured path} or more simple \emph{proper path} if two any consecutive edges receive different colours. An edge-coloured graph $G$ is called a \emph{properly connected graph} if every pair of vertices is connected by a proper path. The \emph{proper connection number}, denoted by $pc(G)$, of a connected graph $G$ is the smallest number of colours that are needed in order to make $G$ properly connected. Let $k\geq2$ be an integer. If every two vertices of an edge-coloured graph $G$ are connected by at least $k$ proper paths, then $G$ is said to be a \emph{properly $k$-connected graph}. The \emph{proper $k$-connection number} $pc_k(G)$, introduced by Borozan et al. \cite{Borozan2012}, is the smallest number of colours that are needed in order to make $G$ a properly $k$-connected graph. The aims of this dissertation are to study the proper connection number and the proper 2-connection number of several classes of connected graphs. All the main results are contained in Chapter 4, Chapter 5 and Chapter 6. Since every 2-connected graph has proper connection number at most 3 by Borozan et al. \cite{Borozan2012} and the proper connection number of a connected graph $G$ equals 1 if and only if $G$ is a complete graph by the authors in \cite{Andrews2016, Borozan2012}, our motivation is to characterize 2-connected graphs which have proper connection number 2. First of all, we disprove Conjecture 3 in \cite{Borozan2012} by constructing classes of 2-connected graphs with minimum degree $\delta(G)\geq3$ that have proper connection number 3. Furthermore, we study sufficient conditions in terms of the ratio between the minimum degree and the order of a 2-connected graph $G$ implying that $G$ has proper connection number 2. These results are presented in Chapter 4 of the dissertation. In Chapter 5, we study proper connection number at most 2 of connected graphs in the terms of connectivity and forbidden induced subgraphs $S_{i,j,k}$, where $i,j,k$ are three integers and $0\leq i\leq j\leq k$ (where $S_{i,j,k}$ is the graph consisting of three paths with $i,j$ and $k$ edges having an end-vertex in common). Recently, there are not so many results on the proper $k$-connection number $pc_k(G)$, where $k\geq2$ is an integer. Hence, in Chapter 6, we consider the proper 2-connection number of several classes of connected graphs. We prove a new upper bound for $pc_2(G)$ and determine several classes of connected graphs satisfying $pc_2(G)=2$. Among these are all graphs satisfying the Chv\'tal and Erd\'{o}s condition ($\alpha({G})\leq\kappa(G)$ with two exceptions). We also study the relationship between proper 2-connection number $pc_2(G)$ and proper connection number $pc(G)$ of the Cartesian product of two nontrivial connected graphs. In the last chapter of the dissertation, we propose some open problems of the proper connection number and the proper 2-connection number.

Page generated in 0.0706 seconds