Spelling suggestions: "subject:administracióńn+data" "subject:administracionśn+data"
21 |
Heart Rot of the Date Palm Caused by Thielaviopsis paradoxa (DeSeynes) von HöhnStreets, R. B. 15 May 1933 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
22 |
Growing Grain Sorghum in ArizonaOttman, Michael, Olsen, Mary 06 1900 (has links)
3 pp. / Production practices for grain sorghum are discussed including hybrid selection, planting date, seeding rate, row configuration, irrigation, fertilization, pest control, and harvesting.
|
23 |
Modelling the development of soil salinity on small farms in Oman growing irrigated crops using saline groundwaterAl-Ajmi, Asadullah January 2000 (has links)
No description available.
|
24 |
Evaluation of soybean (Gylcine max) planting dates and plant densities in northern growing regions of the Northern Great PlainsTkachuk, Cassandra 11 April 2017 (has links)
Soybean (Glycine max L. Merr.) planting date and plant density are agronomic decisions made simultaneously at the beginning of the growing season that can be used to maximize yield and economic return. Research on these basic soybean agronomic decisions must be conducted to support the expansion of soybean production in northern growing regions of the Northern Great Plains (NGP). The objectives of this study were to evaluate the effects of planting dates based on soil temperature on soybean emergence, maturity, and yield for short and long season varieties in Manitoba, and to determine optimum soybean plant density for early to very late planting dates in northern growing regions of the NGP. In the first experiment, calendar date had a greater influence than soil temperature at planting on soybean yield. Soybean yield declined with later planting rather than increasing soil temperature at planting. The earliest planting dates resulted in the greatest soybean yields. In the second experiment, soybean yield-density relationships were responsive to planting date. Yield-density relationships formed early/mid (May 4 to 26) and late/very late (June 2 to 23) planting date groups for combined site years. Early/mid planting dates resulted in greater maximum yields. According to the yield-density model, true yield maximization did not occur for any planting dates and site years within the range of plant densities tested in this field study. Soybean economic optimum seed densities (EOSDs) were much lower than predicted plant densities that maximized yield. Soybean EOSDs were identified as 492,000 and 314,000 seeds ha-1 by marginal cost analysis for early/mid and late/very late planting, respectfully. These values were sensitive to changes in soybean grain price and seed cost. Thus, growers need to adjust EOSDs for changes in price and cost. A combined analysis of soybean yields from both experiments using similar target plant densities determined that a significant negative linear relationship existed between soybean yield and planting date. The greatest soybean yields resulted from early planting and declined by 16 kg ha-1 for each one-day delay in planting from Apr 27 to June 16. However, yield responses varied among site years. The overall recommendation from this study would be to plant soybeans during the month of May at a profit-maximizing seed density, accounting for fluctuating grain price and seed cost. / May 2017
|
25 |
Effect of planting date on growth, development, and yield of grain sorghum hybridsDiawara, Bandiougou January 1900 (has links)
Master of Science / Department of Agronomy / Scott A. Staggenborg / In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to avoid severe environmental stresses during these sensitive stages. The hypothesis of the study was that late May planting improves grain sorghum yield, growth and development compared with late June planting. The objectives of this research were to investigate the influence of planting dates on growth, development, and yield of different grain sorghum hybrids, and to determine the optimal planting date and hybrid combination for maximum biomass and grains production. Three sorghum hybrids (early, medium , and late maturing) were planted in late May and late June without irrigation in Kansas at Manhattan/Ashland Bottom Research Station, and Hutchinson in 2010; and at Manhattan/North Farm and Hutchinson in 2011. Data on leaf area index, dry matter production, harvest index, yield and yield components were collected. Grain yield and yield components were influenced by planting date depending on environmental conditions. At Manhattan (2010), greater grain yield, number of heads per plant, harvest index, and leaf-area were obtained with late-June planting compared with late May planting, while at Hutchinson (2010) greater yield was obtained with late May planting for all hybrids. The yield component most affected at Hutchinson was the number of kernels panicle-1 and plant density. Late-May planting was favorable for late maturing hybrid (P84G62) in all locations. However, the yield of early maturing hybrid (DKS 28-05) and medium maturing hybrid (DKS 37-07) was less affected by delayed planting. The effects of planting dates on growth, development, and yield of grain sorghum hybrids were found to be variable among hybrid maturity groups and locations.
|
26 |
Sonication to Improve Date Palm Seed Degradability in The RumenAboragah, Ahmad A 01 May 2019 (has links)
The main objective of this research was to evaluate the effects of chemical treatment and ultrasound processing (sonication) on the fiber composition and rumen degradability of date palm seeds (DPS). For this purpose, five trials were conducted. In the first trial, the effects of treating DPS with 4% sodium hydroxide (NaOH) at different temperatures (23, 50 and 100 0C) and for different times (30, 60 and 356 min) on seeds fiber content and ruminal degradability were evaluated. Relative to untreated seeds, treated seeds had lower (P<0.05) lignin and hemicellulose, and greater (P<0.05) neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose content, particularly at high temperatures. The degradability of seeds organic matter (OM) and NDF were greater (P<0.01) in the treated (41.79 and 35.44%) than untreated seeds (24.71 and 22.77; respectively), particularly when incubated at 23 0C. Treatment time, however, had no effect (P>0.01) on seeds OM and NDF degradability.
|
27 |
ESTABLISHING GROWING DEGREE DAY ESTIMATES TO PREDICT CRITICAL GROWTH STAGES IN SOFT RED WINTER WHEATSnyder, Ethan J. 01 January 2018 (has links)
Predicting developmental growth stages in soft red winter wheat (Triticum aestivum L.) (SRWW) could improve agronomic management in Kentucky. However, predicting SRWW development is complex due to vernalization requirement and photoperiod sensitivity differences of cultivars. The objectives of this study are to (1) determine ability of Kompetitive Allele Specific PCR (KASP) genotyping to predict phenotype; (2) determine the relative vernalization requirement (RVR) of 50 SRWW cultivars in a greenhouse (GH) assay; and (3) measure growing degree-days (GDD) required by cultivars to reach eight growth stages in a field assay. Fifty SRWW cultivars were characterized with 14 KASP markers for Vrn and Ppd loci. Additionally, cultivars were grown in a GH, vernalized outdoors for three, six, or nine weeks, and moved back into the GH where days to full flower were measured. Cultivars were also seeded into hill plots monthly from October to March at Princeton (2016; 2017) and Lexington, KY (2017) in three field trials. Cumulative GDD to emergence, green-up, pseudo-stem erection, jointing, flag leaf, beginning flower, full flower, and harvest maturity were measured. Field trials and supporting historical wheat development data suggest that prediction of SRWW growth and development is possible using a cumulative GDD scale in Kentucky.
|
28 |
The development of models for computer simulation with detailed application to a CDC 6400 systemBeaumont, William Paul. January 1975 (has links) (PDF)
No description available.
|
29 |
Evaluating Performance for Network Equipment Manufacturing FirmsLin, Hong-jia 08 July 2009 (has links)
none
|
30 |
Characteristics of a flavored beverage formulated with date seed solidsAbusida, Dawud Isa January 1979 (has links)
No description available.
|
Page generated in 0.1089 seconds