Depression is a complex psychiatric illness that affects a large proportion of the population. Many researchers make use of preclinical animal models to study the behavioural and neurobiological characteristics of this disease. However, although a bias towards maladaptive thinking patterns and emotional responses is a cardinal symptom of depression, these symptoms have been rarely considered in preclinical models. One way to investigate maladaptive thinking is through the use of fear conditioning paradigms. Fear conditioning evaluates emotional memory by assessing a rodent’s ability to associate neutral cues with an aversive experience. It requires the activation of brain structures critically involved in emotion-related learning and memory processes, most notably the hippocampus and amygdala, to successfully learn the task. The primary goal of this dissertation was to gain a better understanding of the consequences of repeated corticosterone injections—a validated preclinical model of depression-- on emotionally driven behaviour, the involvement of the hippocampus and amygdala in mediating these behaviours, and whether the antidepressant, fluoxetine, can prevent the effects of corticosterone on these behaviours. To begin, in Chapter 2 I confirmed that the depressogenic effects of corticosterone in the forced swim test, which is a traditional behavioural assay for depression in rodents, are not due to procedural differences or non-specific motor effects. I then investigated the impact of repeated corticosterone injections on the learning and memory of delay and contextual fear conditioning. I examined whether altering the order in which rats recall context versus tone cued fear associations determines the magnitude of corticosterone’s effect on conditioned fear. I found that corticosterone dose-dependently increased freezing to contextual cues whereas freezing to tone cues was increased regardless of dose. Furthermore, the order of the presentation of context versus tone cues during recall determined whether corticosterone produced significant enhancements in freezing. In Chapter 4, I investigated whether neuronal activity in the hippocampus and amygdala after recall of contextual or tone cued fear was associated with the effects of corticosterone found in Chapter 3. Recall of contextual cues was associated with neuronal activity in specific sub regions of the amygdala without any observed changes in the hippocampus. In Chapter 5, I investigated whether repeated corticosterone injections would also enhance the learning and memory of trace fear conditioning, a task that is heavily reliant on the hippocampus. I found that corticosterone increased freezing during recall of trace cues and enhanced the acquisition of trace cues. The results from this chapter, taken together with the results from chapters 3 and 4, suggest that repeated corticosterone exposure readily enhances learning and memory processes that evoke emotional arousal. In Chapter 6, I asked whether repeated treatment with the antidepressant, fluoxetine, could prevent increased fear learning produced by repeated corticosterone injections. I found that fluoxetine decreased freezing behaviour in corticosterone rats during recall of tone cues. Overall, the results of this dissertation further our understanding of the effects of corticosterone on learning and memory tasks that evoke emotional arousal, support the use of fear conditioning as a measure of depression-like behaviour, and demonstrate that repeated corticosterone injections reliably produce a depressive phenotype in rats.
Identifer | oai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2014-06-1553 |
Date | 2014 June 1900 |
Contributors | Kalynchuk, Lisa E. |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text, thesis |
Page generated in 0.0017 seconds