Return to search

New Technique for Imputing Missing Item Responses for an Ordinal Variable: Using Tennessee Youth Risk Behavior Survey as an Example.

Surveys ordinarily ask questions in an ordinal scale and often result in missing data. We suggest a regression based technique for imputing missing ordinal data. Multilevel cumulative logit model was used with an assumption that observed responses of certain key variables can serve as covariate in predicting missing item responses of an ordinal variable. Individual predicted probabilities at each response level were obtained. Average individual predicted probabilities for each response level were used to randomly impute the missing responses using a uniform distribution. Finally, likelihood ratio chi square statistics was used to compare the imputed and observed distributions. Two other forms of multiple imputation algorithms were performed for comparison. Performance of our imputation technique was comparable to other 2 established algorithms. Our method being simpler does not involve any complex algorithms and with further research can potentially be used as an imputation technique for missing ordinal variables.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-3515
Date15 December 2007
CreatorsAhmed, Andaleeb Abrar
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0019 seconds