Return to search

Modèles Hémodynamiques: Investigation et Application à l'Analyse en Imagerie Cérébrale

L'enjeu de la présente thèse est de proposer de nouvelles méthodes d'analyse des données d'imagerie cérébrale acquises en Imagerie par Résonance Magnétique fonctionnelle (IRMf). Elle s'est concentrée en particulier sur la compréhension des signaux temporels mesurés en IRMf et leur lien avec l'activité cérébrale. En effet, les variations du signal que l'on observe en IRMf sont dues à des changements de l'afflux du sang dans le cerveau et de l'oxygénation de ce sang. Ces changements sont liés à l'activité des neurones, et l'on nomme ce phénomène la réponse hémodynamique. Cette réponse hémodynamique fait l'objet d'un important effort de modélisation, de manière à mieux pouvoir interpréter les données d'IRMf. Et cette thèse contient des travaux liés à la fois à la modélisation pour elle-même, avec l'étude de certains détails des modèles hémodynamiques, et à la fois à l'utilisation de ces modèles pour l'analyse des données, avec en particulier l'analyse des données IRMf et la fusion entre des données d'IRMf et d'Electroencéphalographie (EEG). Ainsi, la première partie de la thèse est consacrée à l'utilisation de modèles hémodynamiques en IRMf. En effet, aujourd'hui, les méthodes standard d'analyse de données d'IRM fonctionnelle utilisent le Modèle Général Linéaire (GLM), qui suppose une relation linéaire entre l'activité des neurones, la réponse hémodynamique et les mesures IRMf. Nous montrons qu'il est aussi possible d'utiliser des modèles plus plausible du point de vue biologique, et éventuellement non-linéaires pour analyser les données. A la place de la régression linéaire utilisée habituellement, nous proposons une identification de modèle basées sur une minimisation d'énergie, et nous proposons d'adapter les tests de Fisher utilisés habituellement dans le cadre du GLM pour pouvoir réaliser dans le nouveau cadre la détection d'activations, le test d'hypothèses cognitives, ainsi que des comparaisons entre différents modèles. La seconde partie quant à elle est expérimentale: nous avons étudié les équations de différents modèles hémodynamiques grâce à des expérience d'Imagerie Optique chez le singe éveillé, dans le cadre d'une collaboration avec Ivo Vanzetta dans l'équipe "Dynamique de la perception visuelle et de l'action'' au CNRS Marseille. Nous nous sommes intéressés en particulier à la dynamique du flux sanguin, qui est de première importance car elle fait le lien entre les activités électriques et métaboliques et les changements du volume et de l'oxygénation du sang. Nous avons mis en évidence des aspects de la réponse hémodynamique qui ne sont pas prévus par les modèles actuels, tels qu'une non-linéarité de cette réponse du flux par rapport à l'intensité de la réponse électrique. Par ailleurs, dans le cadre de la même collaboration, nous avons conçu une méthode pour estimer la vitesse des globules rouges dans les vaisseaux sanguins filmés en Imagerie Optique, qui constitue une nouvelle technique de mesure de ce flux sanguin. Enfin, dans la troisième partie, nous avons étendu les méthodes présentées dans la première partie à l'analyse de données de modalités multiple, et en particulier, proposons une méthode pour estimer l'activité cérébrale à partir d'enregistrement simultanés en IRMf et en EEG. Cette méthode est validée sur des données synthétiques. Le présent synopsis résume les points importants de ces travaux: les objectifs, les méthodes, les conclusions et conséquences pour chaque chapitre. Nous avons également tenté d'en présenter une critique objective, en mentionnant à la fois ce qui constitue des contributions originales et les faiblesses restantes. Nous espérons que ce résumé permettra au lecteur de se repérer rapidement dans cette thèse, et de bien comprendre les relations entre ses différentes composantes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00457464
Date02 May 2006
CreatorsDeneux, Thomas
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds