Three growing power electronics applications have massive requirements for properly operating their medium-voltage and high-voltage systems: electric transportation, renewable energy, and the power grid. Their needs include dense power systems with higher efficiency and higher voltage and current devices. This requires devices with higher switching frequencies to lower the size of the passives in the converter and devices that can withstand higher operating temperatures as components move closer together to improve power densities. Devices that achieve higher switching speeds and lower specific on-state resistances also reduce losses.
Wide bandgap devices (WBG) like silicon carbide (SiC) have a higher bandgap, higher electric field strength, higher thermal conductivity, and lower carrier concentration than silicon (Si). This allows for higher temperature operation, faster switching, higher voltage blocking, and lower power losses, directly meeting the requirements of the previously noted applications. However, the current packaging schemes are limiting the ability of SiC to operate in these applications by applying packaging schemes used for Si. Therefore, it is critical to use and refine advanced packaging techniques so that WBG devices can better operate and meet the growing demands of these power electronic applications.
Low-inductance, wirebond-less, high-density, scalable modules are possible due to advanced packaging methods. While beneficial to the operation and design, these techniques introduce new challenges to the fabrication process. This requires refinement to improve the yield of sandwich-structure modules with wirebond-less interconnects. For this module, encapsulated, silver-sintered substrates reduce the peak electric field within the package, improving the partial discharge inception voltage to meet insulation requirements. It is essential to have a uniform bondline between the substrates to achieve all bond connections and improve reliability. Silver sintering is also used to attach the molybdenum (Mo) post interconnects. These interconnects allow for sandwich-structure modules with low inductances; however, they have tolerance variation from manufacturing and bondline thicknesses, which become problematic for multi-chip power modules with an increased number of die and posts. The variation results in tilt, causing some posts to disconnect altogether. Additionally, soldering MCPMs involves a large thermal mass that the soldering reflow profile from a datasheet does not account for.
Ultimately, these fabrication concerns can result in misalignment or disconnected post interconnects to the top substrate. Post interconnect planarity and alignment are vital for this multi-chip power module to avoid open or shorted connections that can derate switch positions. This thesis aims to refine each packaging step in assembling a wirebond-less, multi-chip power module. The bond uniformity of silver (Ag) sintering is addressed in dried preform and wet paste cases. The soldering methods are explored and improved by creating a modified reflow profile for large thermal masses and introducing pressure to reduce bondline variation and voiding content. The entire sandwich structure module is analyzed in a statistical tolerance analysis to understand which component introduces the most variation and height mismatch, providing insight as to which packaging techniques need further control to improve the yield of multi-chip power modules. / Master of Science / The electrification of many systems worldwide has increased the need for compact, efficient power electronics. Their applications span electric transportation, renewable energy systems, grid applications, and data centers, to name a few medium-voltage applications. Wide bandgap (WBG) semiconductors can outperform silicon in these applications, offering higher temperature robustness, higher efficiency performance, and higher voltage capabilities. The faster switching will reduce the size and weight of the converters containing these devices. However, using typical packaging schemes such as wirebonds will limit the potential of WBG devices in these applications.
Advanced packaging techniques have been developed to increase the electric field strength, reduce the power loop inductances, reduce electromagnetic interference from fast-switching transients, and improve the power densities of multi-chip power modules for medium voltage and current applications. However, these packaging techniques are not trivial to implement and have resulted in a low yield of these modules.
This thesis aims to refine each packaging step in assembling a wirebond-less, multi-chip power module. The bond uniformity of silver sintering is addressed in cases of dried preform and wet paste. The soldering methods are explored and improved by creating a modified reflow profile for large thermal masses and introducing pressure to reduce bondline variation and voiding content. The entire sandwich structure module is analyzed in a statistical tolerance analysis to understand which component introduces the most variation and height mismatch, providing insight as to which packaging techniques need further control to improve the yield of multi-chip power modules.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115465 |
Date | 20 June 2023 |
Creators | Lester, Danielle Kathryn |
Contributors | Electrical Engineering, Dimarino, Christina Marie, De La Reelopez, Jaime, Lu, Guo Quan |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds