The field of cancer therapeutic development has been dominated by two research and discovery paradigms, the cytotoxicity-based or phenotype driven strategy and the target-based rational approach. This thesis describes the standardization of novel assays used in both approaches and the discoveries made using these processes. Rational drug design or the target-based approach to discovering novel anti-cancer agents requires a basic understanding of the oncogenic signals that induce uncontrolled cellular proliferation. c-MET is a proto-oncogene, linked to a number of different cancers, that encodes a receptor tyrosine kinase. As an oncogene, c-MET has been shown to transform cells in the laboratory setting and is dysregulated in number of malignancies. Thus, we sought to discover a small molecule inhibitor of c-MET kinase activity by screening a novel library of small molecules. In the second part of this dissertation, we describe the standardization of a high-throughput assay to identify putative c-MET inhibitors and the results of our screening attempt. Cytotoxicity-based screening is another validated approach that is used to discover anti-cancer agents. As a parallel program to our c-MET discovery effort, we designed a high-throughput cytotoxicity assay to identify a novel small molecule with high cytotoxic activity towards tumor cells. The result of this screen was the identification of ON015640, a novel anti-cancer therapeutic with tubulin-depolymerizing activity. Throughout the course of this project, we tried to discern the advantages and disadvantages of the two predominant paradigms in cancer therapeutic research. Both strategies require careful assay design and an acute understanding of the molecular and genetic underpinnings of cancer. While it is clear that structure-based rational drug design has its merits and its success stories, it has become increasingly clear that seeking out a desired biological effect may serve as a more effective staring point when dealing with cancers for which no clear oncogene addiction phenotype has been observed. / Molecular and Cellular Physiology
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/1445 |
Date | January 2011 |
Creators | Hoffman, Benjamin |
Contributors | Shore, Scott K., Engel, Nora, De Riel, Jon K., Peterson, Jeffrey |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 121 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/1427, Theses and Dissertations |
Page generated in 0.0023 seconds