Return to search

Inverse inference in the asymmetric Ising model / Inférence inverse dans le modèle Ising asymétrique

Des techniques expérimentales récentes ont donné la possibilité d'acquérir un très grand nombre de données concernant des réseaux biologiques complexes, comme des réseaux de neurones, des réseaux de gènes et des réseaux d'interactions de protéines. Ces techniques sont capables d'enregistrer les états des composantes individuelles de ces réseaux (neurones, gènes, protéines) pour un grand nombre de configurations. Cependant, l'information la plus pertinente biologiquement se trouve dans la connectivité de ces systèmes et dans la façon précise avec laquelle ces composantes interagissent, information que les techniques expérimentales ne sont pas au point d'observer directement. Le bût de cette thèse est d'étudier les méthodes statistiques nécessaires pour inférer de l'information sur la connectivité des réseaux complexes en partant des données expérimentales. Ce sujet est traité par le point de vue de la physique statistique, en puisant de l'arsenal de méthodes théoriques qui ont été développées pour l'étude des verres de spins. Les verres de spins sont des exemples de réseaux à variables discrètes qui interagissent de façon complexe et sont souvent utilisés pour modéliser des réseaux biologiques. Après une introduction sur les modèles utilisés ainsi qu'une discussion sur la motivation biologique de cette thèse, toutes les méthodes d'inférence de réseaux connues sont présentées et analysées du point de vue de leur performance. Par la suite, dans la troisième partie de la thèse, un nouvelle méthode est proposée qui s'appuie sur la remarque que les interactions en biologie ne sont pas nécessairement symétriques (c'est-à-dire l'interaction entre les noeuds A et B n'est pas la même dans les deux directions). Il est démontré que cette assomption conduit à des méthodes qui sont capables de prédire les interactions de façon exacte, étant donné un nombre suffisant de données, tout en utilisant un temps de calcul polynomial. Ceci est un résultat original important car toutes les autres méthodes connues sont soit exactes et non-polynomiales soit inexactes et polynomiales. / Recent experimental techniques in biology made possible the acquisition of overwhelming amounts of data concerning complex biological networks, such as neural networks, gene regulation networks and protein-protein interaction networks. These techniques are able to record states of individual components of such networks (neurons, genes, proteins) for a large number of configurations. However, the most biologically relevantinformation lies in their connectivity and in the way their components interact, information that these techniques aren't able to record directly. The aim of this thesis is to study statistical methods for inferring information about the connectivity of complex networks starting from experimental data. The subject is approached from a statistical physics point of view drawing from the arsenal of methods developed in the study of spin glasses. Spin-glasses are prototypes of networks of discrete variables interacting in a complex way and are widely used to model biological networks. After an introduction of the models used and a discussion on the biological motivation of the thesis, all known methods of network inference are introduced and analysed from the point of view of their performance. Then, in the third part of the thesis, a new method is proposed which relies in the remark that the interactions in biology are not necessarily symmetric (i.e. the interaction from node A to node B is not the same as the one from B to A). It is shown that this assumption leads to methods that are both exact and efficient. This means that the interactions can be computed exactly, given a sufficient amount of data, and in a reasonable amount of time. This is an important original contribution since no other method is known to be both exact and efficient.

Identiferoai:union.ndltd.org:theses.fr/2013PA112029
Date22 February 2013
CreatorsSakellariou, Jason
ContributorsParis 11, Mézard, Marc
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage, InteractiveResource

Page generated in 0.0028 seconds