Spelling suggestions: "subject:"disordered systems"" "subject:"misordered systems""
1 |
Topics in disordered systems theoryRodgers, Geoffrey John January 1988 (has links)
No description available.
|
2 |
Simulation studies of liquids, supercritical fluids and radiation damage effectsYang, Chenxing January 2017 (has links)
The work in this thesis aims to gain fundamental understanding of several important types of disordered systems, including liquids, supercritical fluids and amorphous solids on the basis of extensive molecular dynamics simulations. I begin with studying the diffusion in amorphous zirconolite, a potential waste form to encapsulate highly radioactive nuclear waste. I find that amorphization has a dramatic effect for diffusion. Interestingly and differently from previous understanding, diffusion increases as a result of amorphization at constant density. Another interesting insight is related to different response of diffusion of different atomic species to structural disorder. I calculate activation energies and diffusion pre-factors which can be used to predict long-term diffusion properties in this system. This improves our understanding of how waste forms operate and provides a quantitative tool to predict their performance. I subsequently study the effects of phase coexistence and phase decomposition in Y-stabilized zirconia, the system of interest in many industrial applications including in encapsulating nuclear waste due to its exceptional resistance to radiation damage. For the first time I show how the microstructure emerges and evolves in this system and demonstrate its importance for self-diffusion and other properties. This has not been observed before and is important for better understanding of existing experiments and planning the new ones. I subsequently address dynamical properties of subcritical liquids and supercritical fluids. I start with developing a new empirical potential for CO2 with improved performance. Using this and other potentials, I simulate the properties of supercritical H2O, CO2 and CH4 and map their Frenkel lines in the supercritical region of the phase diagram. I observe that the Frenkel line for CO2 coincides with experimentally found maxima of solubility and explain this finding by noting that the Frenkel line corresponds to the optimal combination of density and temperature where the density is maximal and the diffusion is still in the fast gas-like regime. This can serve as a guide in future applications of supercritical fluids and will result in their more efficient use in dissolving and extracting applications. I extend my study to collective modes in liquids. Here, my simulations provide first direct evidence that a gap emerges and evolves in the reciprocal space in transverse spectra of liquids. I show that the gap increases with temperature and is inversely proportional to liquid relaxation time. Interestingly, the gap emerges and evolves not only in subcritical liquids but also in supercritical fluids as long as they are below the Frenkel line. Given the importance of phonons in condensed matter physics and other areas of physics, I propose that the discovery of the gap represents a paradigm change. There is an active interest in the dynamics of liquids and supercritical fluids, and I therefore hope that my results will quickly stimulate high-temperature and high-pressure experiments aimed at detecting and studying the gap in several important systems.
|
3 |
Vidros de spin com interação de multispins em campos aleatórios / Spin Glasses Multispins Interactions Random FieldsOliveira Filho, Luiz Ozorio de 08 March 2005 (has links)
Estudamos o efeito do campo aleatório sobre um modelo de vidro de spin com interações de p spins de alcance infinito e distribuição de probabilidade gaussiana. O caso p = 2 corresponde ao modelo de Sherrington-Kirkpatrick na presença de um campo aleatório. O caso p \'SETA\' \'INFINITO\' corresponde ao REM (Random Energy Model) de Derrida na presença de um campo aleatório. Além da interação de p spins, consideramos a presença de interações uniformes ferro ou antiferromagnéticas de alcance infinito. Tanto no caso ferro quanto antiferromagnético, empregamos dois procedimentos para tratar o problema: o método de réplicas no ensemble canônico e o método da contagem de estados no ensemble microcanônico. No método de réplicas resolvemos o problema para qualquer valor de p tanto sem quebra da simetria de permutação entre réplicas, quanto com um passo de quebra de simetria de Parisi. Deste modo, recuperamos resultados conhecidos para alguns modelos já estudados na literatura. Em seguida, tomamos o limite p \'SETA\' \'INFINITO\' que fornece uma solução completa para o problema do REM na presença de um campo aleatório. No método da contagem de estados, aplicável apenas no limite p \'SETA\' \'INFINITO\', mostramos que podemos estender a solução de Derrida mesmo na presença de um campo aleatório. Isso nos permitiu fazer a contagem de estados evitando assim o problema da \"catástrofe da entropia negativa\" presenta na solução réplica simétrica. Além disso, mostramos que qualquer sistema que seja solúvel sem a interação aleatória de p spins continua solúvel na presença dessa interação no limite p \'SETA\' \'INFINITO\'. Portanto, concluímos que a interação aleatória de p spins é somente adicionar um carácter vidro de spin ao sistema. Obtivemos expressões gerais válidas para qualquer distribuição do campo aleatório, embora a análise numérica tenha sido restrita às distribuições duplo-delta e gaussiana. Estudamos a influência do campo aleatório sobre os diagramas de fases e, em particular, mostramos que podem surgir pontos tricríticos no caso de uma distribuição duplo-delta. / We studied the effect of a random field on spin-glass models with infinite-ranged p spin interactions with a Gaussian probability distribution. The case p = 2 corresponds to the Sherrington-Kirkpatrick model in the presence of a random field. The case p \'SETA\' \'INFINITO\' corresponds to the REM (Random Energy Model) introduced by Derrida in the presence of a random field. Besides the p-spin interactions we also included uniform infinite-ranged ferromagnetic and antiferromagnetic interactions. Both in the case of ferromagnetic and antiferromagnetic interactions we employed two different approaches: The replica method in the canonical ensemble and the method of counting of the states in the microcanonical ensemble. In the replica method we solved the problem for arbitrary p both in the case of replica symmetry and in the first step of Parisi\'s replica-symmetry breaking scheme. This allowed us to rederive results for some models already known in the Literature. Next we took the limit p \'SETA\' \'INFINITO\' which yielded a complete solution to the REM in a random field. In the method of counting of the states, which is effective only in the limit p \'SETA\' \'INFINITO\', we showed that we can extend the Derrida\'s solution even in the presence of a random field. This allowed us to do the counting of the states avoiding the so called negative-entropy catastrophe present in the replica-symmetric solution. We also showed that any solvable model without random p-spin interactions is also solvable in the presence of such interactions in the limit p \'SETA\' \'INFINITO\'. Therefore, we conclude that the p-spin random interactions only add a spin-glass character to the system. We have obtained general expressions valid for any random-field distributions, although we limited the numerical analysis to double-delta and Gaussian distributions. We studied the effects of the random field on the phase diagrams, and in particular, we showed the possibility of tricritical point in the case of double-delta distributions.
|
4 |
Modelos de ecossistemas com interações não lineares. / Model ecosystems with nonlinear interspecies interactions.Santos, Danielle Oliveira Costa 24 September 2004 (has links)
Neste trabalho investigamos as propriedade estatísticas de um modelo de coevolução de N espécies, sob a perspectiva da dinâmica de replicadores. As interações entre pares de espécies são dadas por variáveis aleatórias independentes, fixas no tempo. As interações são também simétricas, de modo que a dinâmica maximiza uma função de Lyapunov (o funcional adaptabilidade). Isto permite usar as técnicas da mecânica estatística de sistemas desordenados para determinar analiticamente as propriedades estatísticas dos estados estacionários, particularmente a diversidade de espécies (total de espécies coexistindo em um sistema ecológico). As auto-interações são iguais a um parâmetro de controle que mede a competição entre indivíduos de uma mesma espécie (competição intraespecífica). A cada espécie associamos um conjunto de p traços ou características, representados por variáveis binárias aleatórias distribuídas com igual probabilidade. As forças de interação são dadas por funções não lineares da regra de Hebb. Estas são funções moduladoras do número de elementos complementares entre os conjuntos de traços de um dado par de espécies. Estudamos analítica e numericamente o caso em que p é proporcional ao total de espécies na comunidade, via método de réplicas. A análise é possível devido ao resultado de Sompolinsky: funções não lineares da regra de Hebb são equivalentes, no limite de p extensivo, a regra de Hebb somada a um ruído gaussiano estático, cuja variância depende da forma da função moduladora. A competição intraespecífica, o total de traços, a presença de espécies altamente complementares e finalmente o peso dos termos de competição interespecífica (elementos não diagonais da matriz de acoplamentos) são as principais influências sobre o comportamento das grandezas termodinâmicas no equilíbrio, principalmente a diversidade. Os resultados analíticos concordam com a solução numérica da equação de replicadores, no regime em que as soluções de réplicas simétricas são estáveis. / We investigate the statistical properties of a coevolution model of N species using the replicator dynamics framework. The pairwise species interactions are given by independent quenched random variables. They are also symmetric, so that the dynamics maximizes a quadratic Lyapunov function (the fitness functional). This allows the use of tools of statistical mechanics of disordered systems to analyze the statistical properties of the equilibrium states, especially the ecosystem diversity (total number of coexisting species in an ecological system). The self-interactions are equal to a control parameter measuring the intraspecies competition. We associate to each species a set of p traits and represent them by independent random variables, equally distributed. The strength of the pairwise interactions is given by nonlinear functions of the Hebb rule. These are modulating functions of the number of complementary elements in the sets of traits of a given species pair. We study analytically and numerically the limit of extensive p, using the replica trick. The analytical approach is possible due to a result derived by Sompolinsky: in the limit of extensive p, nonlinear functions of the Hebb rule are equivalent to the Hebb rule plus a Gaussian static noise, whose variance is dependent on the form of the modulating function. The intraspecies competition, the total number of traits, the presence of highly complementary species pairs and the contribution of the nondiagonal elements of the interaction matrix are the main influences over the behavior of the equilibrium properties, principally the diversity. Our analytical results agree with the numerical solutions of the replicator equation in the regime of stable replica symmetric solutions.
|
5 |
Modelos de ecossistemas com interações não lineares. / Model ecosystems with nonlinear interspecies interactions.Danielle Oliveira Costa Santos 24 September 2004 (has links)
Neste trabalho investigamos as propriedade estatísticas de um modelo de coevolução de N espécies, sob a perspectiva da dinâmica de replicadores. As interações entre pares de espécies são dadas por variáveis aleatórias independentes, fixas no tempo. As interações são também simétricas, de modo que a dinâmica maximiza uma função de Lyapunov (o funcional adaptabilidade). Isto permite usar as técnicas da mecânica estatística de sistemas desordenados para determinar analiticamente as propriedades estatísticas dos estados estacionários, particularmente a diversidade de espécies (total de espécies coexistindo em um sistema ecológico). As auto-interações são iguais a um parâmetro de controle que mede a competição entre indivíduos de uma mesma espécie (competição intraespecífica). A cada espécie associamos um conjunto de p traços ou características, representados por variáveis binárias aleatórias distribuídas com igual probabilidade. As forças de interação são dadas por funções não lineares da regra de Hebb. Estas são funções moduladoras do número de elementos complementares entre os conjuntos de traços de um dado par de espécies. Estudamos analítica e numericamente o caso em que p é proporcional ao total de espécies na comunidade, via método de réplicas. A análise é possível devido ao resultado de Sompolinsky: funções não lineares da regra de Hebb são equivalentes, no limite de p extensivo, a regra de Hebb somada a um ruído gaussiano estático, cuja variância depende da forma da função moduladora. A competição intraespecífica, o total de traços, a presença de espécies altamente complementares e finalmente o peso dos termos de competição interespecífica (elementos não diagonais da matriz de acoplamentos) são as principais influências sobre o comportamento das grandezas termodinâmicas no equilíbrio, principalmente a diversidade. Os resultados analíticos concordam com a solução numérica da equação de replicadores, no regime em que as soluções de réplicas simétricas são estáveis. / We investigate the statistical properties of a coevolution model of N species using the replicator dynamics framework. The pairwise species interactions are given by independent quenched random variables. They are also symmetric, so that the dynamics maximizes a quadratic Lyapunov function (the fitness functional). This allows the use of tools of statistical mechanics of disordered systems to analyze the statistical properties of the equilibrium states, especially the ecosystem diversity (total number of coexisting species in an ecological system). The self-interactions are equal to a control parameter measuring the intraspecies competition. We associate to each species a set of p traits and represent them by independent random variables, equally distributed. The strength of the pairwise interactions is given by nonlinear functions of the Hebb rule. These are modulating functions of the number of complementary elements in the sets of traits of a given species pair. We study analytically and numerically the limit of extensive p, using the replica trick. The analytical approach is possible due to a result derived by Sompolinsky: in the limit of extensive p, nonlinear functions of the Hebb rule are equivalent to the Hebb rule plus a Gaussian static noise, whose variance is dependent on the form of the modulating function. The intraspecies competition, the total number of traits, the presence of highly complementary species pairs and the contribution of the nondiagonal elements of the interaction matrix are the main influences over the behavior of the equilibrium properties, principally the diversity. Our analytical results agree with the numerical solutions of the replicator equation in the regime of stable replica symmetric solutions.
|
6 |
Vidros de spin com interação de multispins em campos aleatórios / Spin Glasses Multispins Interactions Random FieldsLuiz Ozorio de Oliveira Filho 08 March 2005 (has links)
Estudamos o efeito do campo aleatório sobre um modelo de vidro de spin com interações de p spins de alcance infinito e distribuição de probabilidade gaussiana. O caso p = 2 corresponde ao modelo de Sherrington-Kirkpatrick na presença de um campo aleatório. O caso p \'SETA\' \'INFINITO\' corresponde ao REM (Random Energy Model) de Derrida na presença de um campo aleatório. Além da interação de p spins, consideramos a presença de interações uniformes ferro ou antiferromagnéticas de alcance infinito. Tanto no caso ferro quanto antiferromagnético, empregamos dois procedimentos para tratar o problema: o método de réplicas no ensemble canônico e o método da contagem de estados no ensemble microcanônico. No método de réplicas resolvemos o problema para qualquer valor de p tanto sem quebra da simetria de permutação entre réplicas, quanto com um passo de quebra de simetria de Parisi. Deste modo, recuperamos resultados conhecidos para alguns modelos já estudados na literatura. Em seguida, tomamos o limite p \'SETA\' \'INFINITO\' que fornece uma solução completa para o problema do REM na presença de um campo aleatório. No método da contagem de estados, aplicável apenas no limite p \'SETA\' \'INFINITO\', mostramos que podemos estender a solução de Derrida mesmo na presença de um campo aleatório. Isso nos permitiu fazer a contagem de estados evitando assim o problema da \"catástrofe da entropia negativa\" presenta na solução réplica simétrica. Além disso, mostramos que qualquer sistema que seja solúvel sem a interação aleatória de p spins continua solúvel na presença dessa interação no limite p \'SETA\' \'INFINITO\'. Portanto, concluímos que a interação aleatória de p spins é somente adicionar um carácter vidro de spin ao sistema. Obtivemos expressões gerais válidas para qualquer distribuição do campo aleatório, embora a análise numérica tenha sido restrita às distribuições duplo-delta e gaussiana. Estudamos a influência do campo aleatório sobre os diagramas de fases e, em particular, mostramos que podem surgir pontos tricríticos no caso de uma distribuição duplo-delta. / We studied the effect of a random field on spin-glass models with infinite-ranged p spin interactions with a Gaussian probability distribution. The case p = 2 corresponds to the Sherrington-Kirkpatrick model in the presence of a random field. The case p \'SETA\' \'INFINITO\' corresponds to the REM (Random Energy Model) introduced by Derrida in the presence of a random field. Besides the p-spin interactions we also included uniform infinite-ranged ferromagnetic and antiferromagnetic interactions. Both in the case of ferromagnetic and antiferromagnetic interactions we employed two different approaches: The replica method in the canonical ensemble and the method of counting of the states in the microcanonical ensemble. In the replica method we solved the problem for arbitrary p both in the case of replica symmetry and in the first step of Parisi\'s replica-symmetry breaking scheme. This allowed us to rederive results for some models already known in the Literature. Next we took the limit p \'SETA\' \'INFINITO\' which yielded a complete solution to the REM in a random field. In the method of counting of the states, which is effective only in the limit p \'SETA\' \'INFINITO\', we showed that we can extend the Derrida\'s solution even in the presence of a random field. This allowed us to do the counting of the states avoiding the so called negative-entropy catastrophe present in the replica-symmetric solution. We also showed that any solvable model without random p-spin interactions is also solvable in the presence of such interactions in the limit p \'SETA\' \'INFINITO\'. Therefore, we conclude that the p-spin random interactions only add a spin-glass character to the system. We have obtained general expressions valid for any random-field distributions, although we limited the numerical analysis to double-delta and Gaussian distributions. We studied the effects of the random field on the phase diagrams, and in particular, we showed the possibility of tricritical point in the case of double-delta distributions.
|
7 |
Quantum Dynamics of Strongly-Interacting Bosons in Optical Lattices with DisorderYan, Mi 04 February 2019 (has links)
Ultracold atoms in optical lattices offer an important tool for studying dynamics in many-body interacting systems in a pristine environment. This thesis focuses on three theoretical works motivated by recent optical lattice experiments. In the first, we theoretically study the center of mass dynamics of states derived from the disordered Bose-Hubbard model in a trapping potential. We find that the edge states in the trap allow center of mass motion even with insulating states in the center. We identify short and long-time mechanisms for edge state transport in insulating phases. We also argue that the center of mass velocity can aid in identifying a Bose-glass phase. Our zero temperature results offer important insights into mechanisms of transport of atoms in trapped optical lattices while putting bounds on center of mass dynamics expected at non-zero temperature.
In the second work, we study the domain wall expansion dynamics of strongly interacting bosons in 2D optical lattices with disorder in a recent experiment {[}J.-y. Choi et al., Science 352, 1547 (2016)]. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.
The last work features our study of phase diagrams of the 2D Bose-Hubbard model in an optical lattice with synthetic spin-orbit coupling. We investigate the transitions between superfluids with different phase patterns, which may be detected by measuring the spin-dependent momentum distribution. / Ph. D. / Ultracold atoms in optical lattices, a periodic potential generated by laser beams, offer an important tool for quantum simulations in a pristine environment. Motivated by recent optical lattice experiments with the implementation of disorder and synthetic spin-orbit coupling, we utilize Gutzwiller mean-field theory (GMFT) to study the dynamics of disordered state in an optical lattice under the sudden shift of the harmonic trap, the domain wall expansion of strongly interacting bosons in 2D lattices with disorder, and spin-orbit-driven transitions in the Bose-Hubbard model. We argue that the center of mass velocity can aid in identifying a Bose-glass phase. Our findings show that evidence for many-body localization claimed in experiments [J.-y. Choi et al., Science 352, 1547 (2016)] must lie in the differences between GMFT and experiments. We also find that strong spin-orbit coupling alone can generate superfluids with finite momentum and staggered phase patterns.
|
8 |
Propriedades eletrônicas e supercondutividade em quase cristais / Electronic properties and superconductivity in quasicrystalsAraújo, Ronaldo do Nascimento 26 February 2019 (has links)
a função espectral mostra uma estrutura bem definida com superfícies de Fermi exibindo uma simetria rotacional de ordem 8 ao redor desse preenchimento, apesar de sua nova estrutura eletrônica, e descobrimos que esses estados são estendidos para a maioria dos preenchimentos, e mostram que, estudamos as propriedades eletrônicas dos mosaicos de Ammann-Beenker, exceto no pseudogap, exceto próximo ao pseudogap. Para estudar a supercondutividade, executamos o escalonamento de tamanho finito do parâmetro de ordem supercondutor e mostramos que ele permanece essencialmente constante, Motivados por uma recente observação experimental de supercondutividade nos quase cristais, onde diminui com o tamanho do aproximante e para valores pequenos da atração U. Isso está de acordo com as observações experimentais, os quasecristais exibem supercondutividade convencional do tipo BCS., ou octogonal, que diz que a energia de Fermi de um quase cristal provavelmente cai sobre um pseudogap. Notavelmente, resolvemos as equações de Bogoliubov-de Gennes e o modelo de pareamento de autovalores exatos para aproximantes de diferentes tamanhos. Em seguida, um exemplo de um quase cristal bidimensional para diferentes tamanhos de aproximantes. O modelo tight-binding resultante mostra uma densidade d / Motivated by a recent experimental observation of superconductivity in the quasicrystals, we study the electronic properties of the Ammann-Beenker, or octagonal tiling, an example of a two-dimensional quasicrystal for different approximant sizes. The resulting tightbinding model shows a very spike density of states and a pseudogap at a filling corresponding to the inverse of the square of the silver ratio. This is a relevant filing due to the Hume-Rothery mechanism, which says that the Fermi energy of a quasicrystal is likely to lie in a pseudogap. Remarkably, the spectral function shows a well-defined structure with Fermi-like pockets displaying an 8-fold rotational symmetry around this filling. We use the Kohn\' localization tensor and the inverse participation ratio to describe the nature of the single-particle eigenstates, and we find that these states are extended for most fillings, except close to the pseudogap. To study the superconductivity, we then solve the Bogoliubov-de Gennes equations and paring of exacts eigenstates for approximants of different sizes. We then perform the finite size scaling of the superconducting order parameter and show that it remains constant, except at pseudogap, where it diminishes with the approximant size for small values of the attraction U. This is line with the experimental observations and show that, despite their novel electronic structure, quasicrystals are prone to display conventional BCS-like superconductivity.
|
9 |
A depinning approach of amorphous plasticity and dewetting / Etude de la plasticité des amorphes et du démouillage par une approche de dépiégeageTyukodi, Botond 13 June 2016 (has links)
Dans cette thèse, nous étudions deux systèmes désordonnés du point de vue du de la transition de dépiégeage (depinning). Dans les deux cas, la dynamique est régie par la compétition entre un paysage aléatoire qui tend à induire des fluctuations et des interactions élastiques qui tendent à les limiter. Dans la première partie, nous développons un modèle mésoscopique simplifié qui vise à rendre compte des propriétés génériques de la plasticité des matériaux amorphes. La déformation plastique des matériaux amorphes présente une phénoménologie qui rappelle les propriétés critiques observées au voisinage d'une transition de dépiégeage: émergence d'un seuil critique (ici la contrainte plastique), dynamique d'avalanches, etc. L'interaction élastique à l'oeuvre dans ce modèle de plasticité dérive directement de la solution élastique d'Eshelby associée à la présence d'une inclusion plastique dans une matrice élastique. Nous montrons que cette interaction anisotrope et à longue portée est caractérisée par la présence de modes mous. ces derniers ont un impact dramatique sur la localisation et les fluctuations de déformation plastique qui augmentent de manière diffusive. Cette phénoménologie n'est pas présente dans le dépiégeage tel qu'il est souvent traité, par exemple avec une approche champ moyen. Nous montrons que les bandes de cisaillement sont des modes mous de l'intéraction d'Eshelby et affectent aussi bien la localisation que les propriétés universelles. Par ailleurs, en testant deux cas extrèmes, nous avons trouvé que les détails du paysage désordonné n'ont pas d'impact particulier sur les propriétés universelles. En application de ce travail, nous montrons que le renforcement des matériaux amorphes par des inclusions dures est relié à la percolation des bandes de cisaillement entre les inclusions. Dans la deuxième partie, nous étudions la morphologie d'une ligne de démouillage en recul sur des surfaces inhomogènes. Contrairement aux modèles de dépiégeage standard, nous développons ici une méthode permettant de décrire le régime de grandes déformations de la ligne de contact et le déchirement de la couche. Nous montrons l'existence d'une concentration seuil des inhomogeneités. Au delà de cette concentration, la ligne s'arrête à une distance finie et autour de la concentration critique, présente des propriétés de type critique. / In the present thesis, two disordered systems are investigated from the depinning perspective. In both of them, the dynamics is governed by the competition between elastic interactions and a disordered landscape. In the first part, we use a simplified mesoscopic model to investigate the generic properties of amorphous plasticity. The yielding of amorphous materials shows universal properties similar to the depinning transition. As such, it is often described by mean field approaches. Here we show that the soft modes present in the interaction kernel (based on the Eshelby solution for a plastic inclusion in an elastic matrix) have a dramatic impact on localization and result in diffusively increasing plastic strain fluctuations. This additional phenomenology is absent in standard depinning and, despite its important consequences, is disregarded in mean field descriptions. We show that shear bands are soft modes of the Eshelby interaction kernel and, besides localization, they affect the universal properties as well. At the same time, we found by testing two extreme cases that the form of the disordered landscape has no considerable impact on the universal properties. As an application, we show that the reinforcement of amorphous materials by hard inclusions is related to the percolation of shear bands in between the inclusions. In the second part of the thesis, we study the morphology of a receding dewetting line on inhomogeneous surfaces. Unlike in standard depinning models, here we developed a method suitable to describe the large deformation regime of the contact line and tearing up of the layer. We show the existence of a threshold concentration of inhomogeneities. Above this concentration the line stops within at finite distance, and around the critical concentration it features critical-like properties.
|
10 |
On the critical behavior of the XX spin-1/2 chain under correlated quenched disorder / O comportamento crítico da cadeia XX de spin-1/2 sob desordem correlacionada e independente do tempoGetelina, João Carlos de Andrade 25 February 2016 (has links)
This work provides a full description of the critical behavior of the XX spin-1/2 chain under correlated quenched disorder. Previous investigations have shown that the introduction of correlation between couplings in the random XX model gives rise to a novel critical behavior, where the infinite-randomness critical point of the uncorrelated case is replaced by a family of finite-disorder critical points that depends on the disorder strength. Here it is shown that most of the critical exponents of the XX model with correlated randomness are equal to clean (without disorder) chain values and do not depend on disorder strength, except the critical dynamical exponent and the anomalous dimension. The former increases monotonically with disorder strength, whereas the results obtained for the latter are unreliable. Furthermore, the scaling relations between the critical exponents were also tested and it was found that those involving the system dimensionality, namely the hyperscaling and Fisher´s scaling relations, are not respected. Measurements of the Rényi entanglement entropy of the system at criticality have also been performed, and it is shown that the scaling behavior of the correlated-disorder case is similar to the theoretical prediction for the clean chain, displaying the same finite-size correction and a disorder-dependent effective central charge in the leading term of the scaling. Further corrections to the scaling of the entanglement entropy were also investigated, but the results are inconclusive. The model was studied via exact numerical diagonalization of the corresponding Hamiltonian. / Este trabalho proporciona uma descrição completa do comportamento crítico da cadeia XX de spin-1/2 sob desordem correlacionada e independente do tempo. Investigações prévias mostraram que a introdução de correlação entre os acoplamentos da cadeia XX desordenada ocasiona o aparecimento de um novo comportamento crítico, onde o ponto crítico de desordem infinita da cadeia não-correlacionada é substituído por uma família de pontos críticos com desordem finita que depende da intensidade da desordem. Mostra-se aqui que a maioria dos expoentes críticos da cadeia XX com desordem correlacionada são iguais aos valores da cadeia limpa (sem desordem) e não dependem da intensidade da desordem, com exceção do expoente dinâmico crítico e da dimensão anômala. O primeiro cresce monotonicamente com a intensidade da desordem, enquanto que para o segundo os resultados obtidos não são confiáveis. Além disso, as relações de escala entre os expoentes críticos também foram testadas, e encontrou-se que aquelas envolvendo a dimensionalidade do sistema, isto é as relações de hiperescala e de Fisher, não são respeitadas. Medidas da entropia de emaranhamento de Rényi do sistema na criticalidade também foram efetuadas, e mostra-se que o comportamento de escala do caso com desordem correlacionada é semelhante à previsão teórica para a cadeia limpa, exibindo a mesma correção de tamanho finito e uma carga central dependente da desordem no termo principal da função de escala. Correções adicionais à função de escala da entropia de emaranhamento também foram investigadas, mas os resultados são inconclusivos. O modelo foi estudado pela diagonalização numérica exata do Hamiltoniano correspondente.
|
Page generated in 0.0707 seconds