Return to search

BINDING, PROTECTION, AND RNA DELIVERY PROPERTIES OF POROUS SILICA NANOPARTICLES IN SPODOPTERA FRUGIPERDA CELLS

Traditional methods of pest control are threatened by the development of insecticide resistance, both to traditional insecticides and Bt toxins. Discovery of RNA interference (RNAi) has created opportunities to develop new insect control mechanisms. However, RNAi responses appear to be robust in coleopteran pests, but other orders, e.g. Lepidoptera and Hemiptera, present varied or ineffective RNAi responses. Current delivery strategies for double-stranded RNA (dsRNA) include microinjection, ingestion, and soaking. These approaches have benefits and problems. This study investigates the potential for porous silica nanoparticles (pSNPs) to improve the delivery of dsRNA and induce an RNAi response in Spodoptera frugiperda cells. Initially, the binding conditions of RNA onto porous and nonporous silica nanoparticles was examined, and the movement of RNA on and within pSNPs was observed. That information was then applied to in vitro studies for examining the capacity of silica nanoparticles to protect dsRNA from degradation by nucleases. This work culminated in an in vivo assay for measuring apoptosis when dsRNA is delivered to insect cells by pSNPs. Results of these studies show that silica nanoparticles bind nucleic acids and that dsRNA is mobile, pSNPs protect dsRNA from nuclease degradation, and pSNP/dsRNA complexes can induce apoptosis in lepidopteran insect cells.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:entomology_etds-1042
Date01 January 2017
CreatorsNadeau, Emily
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Entomology

Page generated in 0.0019 seconds