Return to search

Regulation und funktionelle Analyse der menschlichen Mismatchreparaturgene /-proteine am speziellen Beispiel von hMSH2 / Regulation and Functinal Analysis of the Human MIsmatch Repair Genes/Proteines

Das menschliche MHS2 Gen ist eine sehr gut charakterisierte Komponente des Mismatch-Reparatur-Systems (MMR) und häufig mit der HNPCC Erkrankung assoziiert. Der Mechanismus über den MSH2 an der Karzinomentwicklung beteiligt ist, sind Defekte in der DNA-Reparatur. Es konnte gezeigt werden, dass Mutationen in den kodierenden Regionen dieses Gens direkt in die Mikrosatelliteninstabilität involviert sind. Generell ist MSH2 ein Teil des postreplikativen Reparatursystems der Zellen, und schützt so vor der Akkumulation von Mutationen. Dadurch wird die genetische Stabilität und Integrität gewährleistet. Ein anderer Teil der zellulären Krebsabwehr ist das p53 Tumorsuppressorgen. Ein möglicher DNA Schaden, der in der Lage ist, p53 zu aktivieren, ist UV-Licht. Eine weitere gut charakterisierte Komponente der zellulären UV Reaktion ist der Transkriptionsfaktor c-Jun. Ziel der Arbeit war es die Regulation und Signalfunktion von MSH2 näher zu charakterisieren. Dazu wurde der Promotor des Gens in ein Luziferase Promotorgenkonstrukt kloniert. Dieses Konstrukt wurde in menschliche Keratinozyten transfiziert, die nachfolgend mit UV bestrahlt wurden. Es konnte eine zeit- und dosisabhängige Hochregulation von MSH2 gezeigt werden. Diese Transkriptionserhöhung wurde von p53 initiiert, denn durch eine gezielte Mutation der p53-Bindungsstelle im MSH2 Promotor war dieser Effekt vollkommen aufgehoben. Interessanterweise war dieser Effekt von einem zusätzlichen Faktor abhängig, ohne den keine Hochregulation erkennbar war. Verantwortlich hierfür war der Transkriptionsfaktor c-Jun. Dadurch konnte eine funktionelle Interaktion von p53 und c-Jun in der transkriptionellen Aktivierung von hMSH2 gezeigt werden. Dieser zeit- und dosisabhängige Effekt war sowohl auf RNA als auch auf Proteinebene nachvollziehbar. Der größte Anstieg war bei 50 J/m2 zu verzeichnen, wohin gegen bei Verwendung von 75 J/m2 die Transkriptmenge geringer wurde, um bei 100 J/m2 erneut anzusteigen. Um diesen erneuten Anstieg des Proteins näher zu beschreiben wurden bei den stark bestrahlten Zellen TUNEL-Untersuchungen durchgeführt. Hierbei zeigte sich eine positive Korrelation zwischen der Menge an MSH2 Protein und an TUNEL-positiven apoptotischen Zellen. Um weiter zu zeigen, dass der zweite Anstieg des Proteins nicht mit einer Reparaturfunktion verbunden ist, wurde ein biochemisch basierter Test durchgeführt, welcher die Reparaturkapazität semiquantitativ beschreibt. Dabei konnte klar gezeigt werden, dass die mit 100 J/m2 bestrahlten Zellen keine Reparaturfunktion mehr erfüllen. FACS-Analysen und Zellfärbungen gegen Annexin V und mit Propidiumiodid bestätigten die stattfindende Apoptose in den Zellen. Eine weitere Komponente des MMR-Systems ist MSH6. MSH6 bildet mit MSH2 ein Dimer, welches den Fehler in der DNA erkennt und das weitere Reparaturprogramm einleitet. Die Expression dieses Proteins konnte nur bis zu einer Dosis von 50-75 J/m2 UV nachgewiesen werden. Im Gegensatz zu MSH2 war MSH6 nicht in 100 J/m2 bestrahlten Keratinozyten detektierbar. Um über die Lokalisation dieser Proteine mehr zu erfahren wurden Immunfärbungen gegen MSH2 durchgeführt. Es zeigte sich eine Translokation des Proteins vom Kern in das Zytoplasma in Korrelation zum zunehmenden DNA-Schaden durch höhere Dosen an UV-Licht. Dies stellt eine mögliche Verbindung zwischen dem Mismatch-Reparatursystem und apoptotischen Signalwegen dar. / MSH2 is a well-characterized component of the DNA mismatch repair system (MMR) frequently associated with Hereditary Nonpolyposis Colorectal Cancer (HNPCC). The mechanism of MSH2-induced cancer is via defects in DNA mismatch repair. Mutations in the coding region of the human gene (hMSH2) have been shown to be directly involved in microsatellite instability in HNPCC. The MSH2 gene is part of the post-replicative mismatch repair system that prevents the accumulation of spontaneous mutations, and thereby ensures the integrity and stability of the genome. Another component of the cancer prevention machinery is the p53 tumor suppressor. A relevant stress that activates p53 is UV-light. Another well known component of the mammalian UV response is the transcription factor c-Jun. To study the stress regulation and signaling function of hMSH2, we cloned the promoter region of hMSH2 in a luciferase reportergene construct. This construct was transfected in human keratinocytes. The cells were then irradiated with UV light. A time and dosage dependent upregulation of hMSH2 was seen. The transcription of the human mismatch repair gene was activated by p53. This activation was lost upon mutation of the p53 binding site. Interestingly this upregulation critically depends on functional interaction of p53 with c-Jun in the transcriptional control of the hMSH2 promoter. The same effect was seen in analyses of the endogenous hMSH2 gene on the RNA level as well as on the protein level. The highest hMSH2-expression was seen at 50 J/m2. At 75 J/m2 the hMSH2 expression level decreased. Surprisingly, at 100 J /m2 hMSH2 expression increased again. The same dosage dependent function was seen on the protein level. To address the question of a second function of hMSH2 in cells irradiated at high dose, TUNEL-assays were performed. A positive correlation between the level of hMSH2 protein and the number of apoptotic cells was found. To study the repair function of hMSH2 in highly irradiated cells, we used a biochemical mismatch repair assay system. Cells treated with high dosage of UV showed no repair activity in contrast to non-irradiated cells. Annexin V staining and FACS analysis confirmed the apoptotic status of these cells. It is well-known that hMSH6 is necessary for dimer formation with hMSH2 (MutSa) to detect DNA mismatches. So far there are little data on a possible involvement of hMSH6 in apoptosis. Therefore was performed an analysis of hMSH6 protein levels in irradiated cells, revealed that hMSH6 was expressed at doses up to 50 – 75 J/m2. In contrast no hMSH6 was detectable in UV-irradiated cells treated with 100 J/m2. In addition fluorescence immuno labelling of MSH2 revealed the subcellular translocation of the protein from the nucleus to the cytoplasm in apoptotic cells. This effect may indicate a possible link between the mismatch repair system and apoptotic pathways.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:724
Date January 2003
CreatorsScherer, Stefan
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds