Este estudo relata a síntese dos catalisadores heterogêneos Fe3O4@nSiO2@MCM-41-MnP e Fe3O4@nSiO2@MCM-41(E)-MnP. São sistemas que aliam as propriedades catalíticas de metaloporfirinas, com as propriedades magnéticas das nanopartículas de magnetita (Fe3O4) numa matriz estruturada de sílica mesoporosa MCM-41. A síntese das nanopartículas de Fe3O4 foi seguida pelo revestimento de sua superfície com camada fina de sílica (Fe3O4@nSiO2). Em seguida, a estrutura mesoporosa da sílica MCM-41 foi formada sobre as partículas recobertas na presença de brometo de hexadeciltrimetilamônio, como surfatante, e tetraetilortosilicato, como o precursor de sílica, obtendo-se o compósito Fe3O4@nSiO2@MCM-41. No processo de síntese do compósito Fe3O4@nSiO2@MCM-41(E), o mesitileno foi incorporado como agente expansor de estrutura, a fim de se obter poros com diâmetros maiores que os característicos para a sílica mesoporosa MCM-41. Os compósitos foram funcionalizados com o agente sililante 3-aminopropiltrietoxisilano. Esta etapa permitiu a imobilização covalente da [Mn(TF5PP)]Cl nos compósitos através de uma reação de substituição nucleofílica aromática, gerando os catalisadores Fe3O4@nSiO2@MCM-41-MnP e Fe3O4@nSiO2@MCM-41(E)-MnP. Caracterizações por espectroscopia no ultravioleta-visível e no infravermelho, reflectância difusa no UV-Vis, magnetometria de amostra vibrante, difração de raios-X, microscopia eletrônica de varredura e transmissão e isotermas de adsorção-dessorção de N2, permitiram compreender a estrutura e morfologia dos catalisadores. A atividade catalítica dos sistemas na oxidação de hidrocarbonetos ((Z) ciclo-octeno e ciclo-hexano) e na oxidação de fármaco (mirtazapina) foi avaliada; iodosilbenzeno ou ácido meta-cloroperoxibenzóico, foram utilizados como agente doador de oxigênio. Os testes catalíticos com os hidrocarbonetos demonstraram maiores rendimentos de epóxido para o catalisador Fe3O4@nSiO2@MCM-41(E)-MnP do que o catalisador Fe3O4@nSiO2@MCM-41-MnP. Estes rendimentos altos para o primeiro foram atribuídos ao seu maior tamanho de poros. Ambos os catalisadores foram seletivos para o produto ciclo-hexanol, indicando um comportamento biomimético. A oxidação do fármaco, nas condições deste estudo preliminar, gerou um metabólito que difere dos dois principais metabólitos (8-hidroximirtazapina e demetilmirtazapina) obtidos em estudos com enzimas P450. Estudos controle de oxidação do fármaco com manganês porfirina em solução revelaram que este sistema foi seletivo para formação do produto demetilmirtazapina. / This study reports on the preparation of the Fe3O4@nSiO2@MCM-41-MnP and Fe3O4@nSiO2@MCM-41(E)-MnP heterogeneous catalysts. They are systems that allies the catalytic properties of metalloporphyrins with the magnetic properties of magnetite (Fe3O4) nanoparticles in a structured matrix of MCM-41 mesoporous silica. Synthesis of Fe3O4 nanoparticles was followed by surface coating with a thin silica layer (Fe3O4@nSiO2). Then, a MCM-41-type mesoporous silica structure was grown over the coated particles in the presence of hexadecyltrimethylammonium bromide, as surfactant, and tetraethylorthosilicate, as the silica precursor, to yield the Fe3O4@nSiO2@MCM-41 composite. It was incorporated into the synthesis route of Fe3O4@nSiO2@MCM-41(E) composite the mesitylene as expanding agent structure, in order to obtain pores with diameters greater than the characteristic for the MCM-41 mesoporous silica. The resulting composites was functionalized with the silylating agent 3-aminopropyltriethoxysilane. This enabled covalent immobilization of [Mn(TF5PP)]Cl onto the composite via a nucleophilic aromatic substitution reaction, to afford the Fe3O4@nSiO2@MCM-41-MnP and Fe3O4@nSiO2@MCM-41(E)-MnP catalysts. Characterization of the catalysts by ultraviolet-visible and infrared spectroscopies, UV-Vis diffuse reflectance, vibrating sample magnetometer, X-ray diffractometry, scanning and transmission electron microscopies and N2 adsorption-desorption isotherm, aimed to understand the structure and morphology of the catalysts. The catalytic activity of the systems in hydrocarbon oxidation ((Z)-cyclooctene and cyclohexane) and the drug oxidation (mirtazapine) was evaluated; iodosylbenzene or meta-chloroperoxybenzoic acid, were used as the oxygen donor agent. The catalytic tests with the hydrocarbons demonstrated higher yields of epoxide for Fe3O4@nSiO2@MCM-41(E)-MnP than Fe3O4@nSiO2@MCM-41-MnP catalyst. These high yields for the first catalyst, were attributed to larger pore size. Both catalysts were selective for the cyclohexanol product, indicating a biomimetic behavior. The drug oxidation, under the preliminary study conditions, generated a metabolite that differs from the two major metabolites (8-hydroxy mirtazapine and demethylmirtazapine) obtained in studies with P450 enzymes. Control drug oxidation studies with manganese porphyrin solution revealed that this system was selective for formation of demethylmirtazapine product.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10082015-143133 |
Date | 08 June 2015 |
Creators | Zanardi, Fabrício Bortulucci |
Contributors | Iamamoto, Yassuko |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0031 seconds