• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Manganêsporfirina imobilizada em compósito magnético Fe3O4@nSiO2@MCM-41: catalisador biomimético aplicado na oxidação de hidrocarbonetos e fármaco / Manganeseporphyrin immobilized onto Fe3O4@nSiO2@MCM-41 magnetic composite: biomimetic catalyst applied on hydrocarbons and drug oxidation

Zanardi, Fabrício Bortulucci 08 June 2015 (has links)
Este estudo relata a síntese dos catalisadores heterogêneos Fe3O4@nSiO2@MCM-41-MnP e Fe3O4@nSiO2@MCM-41(E)-MnP. São sistemas que aliam as propriedades catalíticas de metaloporfirinas, com as propriedades magnéticas das nanopartículas de magnetita (Fe3O4) numa matriz estruturada de sílica mesoporosa MCM-41. A síntese das nanopartículas de Fe3O4 foi seguida pelo revestimento de sua superfície com camada fina de sílica (Fe3O4@nSiO2). Em seguida, a estrutura mesoporosa da sílica MCM-41 foi formada sobre as partículas recobertas na presença de brometo de hexadeciltrimetilamônio, como surfatante, e tetraetilortosilicato, como o precursor de sílica, obtendo-se o compósito Fe3O4@nSiO2@MCM-41. No processo de síntese do compósito Fe3O4@nSiO2@MCM-41(E), o mesitileno foi incorporado como agente expansor de estrutura, a fim de se obter poros com diâmetros maiores que os característicos para a sílica mesoporosa MCM-41. Os compósitos foram funcionalizados com o agente sililante 3-aminopropiltrietoxisilano. Esta etapa permitiu a imobilização covalente da [Mn(TF5PP)]Cl nos compósitos através de uma reação de substituição nucleofílica aromática, gerando os catalisadores Fe3O4@nSiO2@MCM-41-MnP e Fe3O4@nSiO2@MCM-41(E)-MnP. Caracterizações por espectroscopia no ultravioleta-visível e no infravermelho, reflectância difusa no UV-Vis, magnetometria de amostra vibrante, difração de raios-X, microscopia eletrônica de varredura e transmissão e isotermas de adsorção-dessorção de N2, permitiram compreender a estrutura e morfologia dos catalisadores. A atividade catalítica dos sistemas na oxidação de hidrocarbonetos ((Z) ciclo-octeno e ciclo-hexano) e na oxidação de fármaco (mirtazapina) foi avaliada; iodosilbenzeno ou ácido meta-cloroperoxibenzóico, foram utilizados como agente doador de oxigênio. Os testes catalíticos com os hidrocarbonetos demonstraram maiores rendimentos de epóxido para o catalisador Fe3O4@nSiO2@MCM-41(E)-MnP do que o catalisador Fe3O4@nSiO2@MCM-41-MnP. Estes rendimentos altos para o primeiro foram atribuídos ao seu maior tamanho de poros. Ambos os catalisadores foram seletivos para o produto ciclo-hexanol, indicando um comportamento biomimético. A oxidação do fármaco, nas condições deste estudo preliminar, gerou um metabólito que difere dos dois principais metabólitos (8-hidroximirtazapina e demetilmirtazapina) obtidos em estudos com enzimas P450. Estudos controle de oxidação do fármaco com manganês porfirina em solução revelaram que este sistema foi seletivo para formação do produto demetilmirtazapina. / This study reports on the preparation of the Fe3O4@nSiO2@MCM-41-MnP and Fe3O4@nSiO2@MCM-41(E)-MnP heterogeneous catalysts. They are systems that allies the catalytic properties of metalloporphyrins with the magnetic properties of magnetite (Fe3O4) nanoparticles in a structured matrix of MCM-41 mesoporous silica. Synthesis of Fe3O4 nanoparticles was followed by surface coating with a thin silica layer (Fe3O4@nSiO2). Then, a MCM-41-type mesoporous silica structure was grown over the coated particles in the presence of hexadecyltrimethylammonium bromide, as surfactant, and tetraethylorthosilicate, as the silica precursor, to yield the Fe3O4@nSiO2@MCM-41 composite. It was incorporated into the synthesis route of Fe3O4@nSiO2@MCM-41(E) composite the mesitylene as expanding agent structure, in order to obtain pores with diameters greater than the characteristic for the MCM-41 mesoporous silica. The resulting composites was functionalized with the silylating agent 3-aminopropyltriethoxysilane. This enabled covalent immobilization of [Mn(TF5PP)]Cl onto the composite via a nucleophilic aromatic substitution reaction, to afford the Fe3O4@nSiO2@MCM-41-MnP and Fe3O4@nSiO2@MCM-41(E)-MnP catalysts. Characterization of the catalysts by ultraviolet-visible and infrared spectroscopies, UV-Vis diffuse reflectance, vibrating sample magnetometer, X-ray diffractometry, scanning and transmission electron microscopies and N2 adsorption-desorption isotherm, aimed to understand the structure and morphology of the catalysts. The catalytic activity of the systems in hydrocarbon oxidation ((Z)-cyclooctene and cyclohexane) and the drug oxidation (mirtazapine) was evaluated; iodosylbenzene or meta-chloroperoxybenzoic acid, were used as the oxygen donor agent. The catalytic tests with the hydrocarbons demonstrated higher yields of epoxide for Fe3O4@nSiO2@MCM-41(E)-MnP than Fe3O4@nSiO2@MCM-41-MnP catalyst. These high yields for the first catalyst, were attributed to larger pore size. Both catalysts were selective for the cyclohexanol product, indicating a biomimetic behavior. The drug oxidation, under the preliminary study conditions, generated a metabolite that differs from the two major metabolites (8-hydroxy mirtazapine and demethylmirtazapine) obtained in studies with P450 enzymes. Control drug oxidation studies with manganese porphyrin solution revealed that this system was selective for formation of demethylmirtazapine product.
2

Manganêsporfirina imobilizada em compósito magnético Fe3O4@nSiO2@MCM-41: catalisador biomimético aplicado na oxidação de hidrocarbonetos e fármaco / Manganeseporphyrin immobilized onto Fe3O4@nSiO2@MCM-41 magnetic composite: biomimetic catalyst applied on hydrocarbons and drug oxidation

Fabrício Bortulucci Zanardi 08 June 2015 (has links)
Este estudo relata a síntese dos catalisadores heterogêneos Fe3O4@nSiO2@MCM-41-MnP e Fe3O4@nSiO2@MCM-41(E)-MnP. São sistemas que aliam as propriedades catalíticas de metaloporfirinas, com as propriedades magnéticas das nanopartículas de magnetita (Fe3O4) numa matriz estruturada de sílica mesoporosa MCM-41. A síntese das nanopartículas de Fe3O4 foi seguida pelo revestimento de sua superfície com camada fina de sílica (Fe3O4@nSiO2). Em seguida, a estrutura mesoporosa da sílica MCM-41 foi formada sobre as partículas recobertas na presença de brometo de hexadeciltrimetilamônio, como surfatante, e tetraetilortosilicato, como o precursor de sílica, obtendo-se o compósito Fe3O4@nSiO2@MCM-41. No processo de síntese do compósito Fe3O4@nSiO2@MCM-41(E), o mesitileno foi incorporado como agente expansor de estrutura, a fim de se obter poros com diâmetros maiores que os característicos para a sílica mesoporosa MCM-41. Os compósitos foram funcionalizados com o agente sililante 3-aminopropiltrietoxisilano. Esta etapa permitiu a imobilização covalente da [Mn(TF5PP)]Cl nos compósitos através de uma reação de substituição nucleofílica aromática, gerando os catalisadores Fe3O4@nSiO2@MCM-41-MnP e Fe3O4@nSiO2@MCM-41(E)-MnP. Caracterizações por espectroscopia no ultravioleta-visível e no infravermelho, reflectância difusa no UV-Vis, magnetometria de amostra vibrante, difração de raios-X, microscopia eletrônica de varredura e transmissão e isotermas de adsorção-dessorção de N2, permitiram compreender a estrutura e morfologia dos catalisadores. A atividade catalítica dos sistemas na oxidação de hidrocarbonetos ((Z) ciclo-octeno e ciclo-hexano) e na oxidação de fármaco (mirtazapina) foi avaliada; iodosilbenzeno ou ácido meta-cloroperoxibenzóico, foram utilizados como agente doador de oxigênio. Os testes catalíticos com os hidrocarbonetos demonstraram maiores rendimentos de epóxido para o catalisador Fe3O4@nSiO2@MCM-41(E)-MnP do que o catalisador Fe3O4@nSiO2@MCM-41-MnP. Estes rendimentos altos para o primeiro foram atribuídos ao seu maior tamanho de poros. Ambos os catalisadores foram seletivos para o produto ciclo-hexanol, indicando um comportamento biomimético. A oxidação do fármaco, nas condições deste estudo preliminar, gerou um metabólito que difere dos dois principais metabólitos (8-hidroximirtazapina e demetilmirtazapina) obtidos em estudos com enzimas P450. Estudos controle de oxidação do fármaco com manganês porfirina em solução revelaram que este sistema foi seletivo para formação do produto demetilmirtazapina. / This study reports on the preparation of the Fe3O4@nSiO2@MCM-41-MnP and Fe3O4@nSiO2@MCM-41(E)-MnP heterogeneous catalysts. They are systems that allies the catalytic properties of metalloporphyrins with the magnetic properties of magnetite (Fe3O4) nanoparticles in a structured matrix of MCM-41 mesoporous silica. Synthesis of Fe3O4 nanoparticles was followed by surface coating with a thin silica layer (Fe3O4@nSiO2). Then, a MCM-41-type mesoporous silica structure was grown over the coated particles in the presence of hexadecyltrimethylammonium bromide, as surfactant, and tetraethylorthosilicate, as the silica precursor, to yield the Fe3O4@nSiO2@MCM-41 composite. It was incorporated into the synthesis route of Fe3O4@nSiO2@MCM-41(E) composite the mesitylene as expanding agent structure, in order to obtain pores with diameters greater than the characteristic for the MCM-41 mesoporous silica. The resulting composites was functionalized with the silylating agent 3-aminopropyltriethoxysilane. This enabled covalent immobilization of [Mn(TF5PP)]Cl onto the composite via a nucleophilic aromatic substitution reaction, to afford the Fe3O4@nSiO2@MCM-41-MnP and Fe3O4@nSiO2@MCM-41(E)-MnP catalysts. Characterization of the catalysts by ultraviolet-visible and infrared spectroscopies, UV-Vis diffuse reflectance, vibrating sample magnetometer, X-ray diffractometry, scanning and transmission electron microscopies and N2 adsorption-desorption isotherm, aimed to understand the structure and morphology of the catalysts. The catalytic activity of the systems in hydrocarbon oxidation ((Z)-cyclooctene and cyclohexane) and the drug oxidation (mirtazapine) was evaluated; iodosylbenzene or meta-chloroperoxybenzoic acid, were used as the oxygen donor agent. The catalytic tests with the hydrocarbons demonstrated higher yields of epoxide for Fe3O4@nSiO2@MCM-41(E)-MnP than Fe3O4@nSiO2@MCM-41-MnP catalyst. These high yields for the first catalyst, were attributed to larger pore size. Both catalysts were selective for the cyclohexanol product, indicating a biomimetic behavior. The drug oxidation, under the preliminary study conditions, generated a metabolite that differs from the two major metabolites (8-hydroxy mirtazapine and demethylmirtazapine) obtained in studies with P450 enzymes. Control drug oxidation studies with manganese porphyrin solution revealed that this system was selective for formation of demethylmirtazapine product.
3

Τοwards a Synthetic Tryptophan Aminotransferase

Tsimpos, Kleomenis January 2017 (has links)
The synthesis and evaluation of a molecularly imprinted polymer has been undertaken using an oxazine-based tryptophanamide transition state analogue (TSA) as template. An efficient route to the synthesis of oxazine-based TSAs for the reaction of pyridoxamine and indole-3-pyruvic acid has been established, with yields of up to 80%. NMR titration studies were performed to examine the interactions between the functional monomer, methacrylic acid and the template. Complexation of the template by functional monomer in the presence of crosslinker showed an apparent KD of 0.63-0.79 ± 0.04 M (293 K, acetonitrile-d3) based upon the chemical shift of the template amide protons. TSA-imprinted and non-imprinted reference polymers were synthesized by free radical polymerization in acetonitrile. Polymer monoliths were ground and fractionated into a 25-63 μm size range. Polymer-ligand recognition studies were conducted using the polymers as HPLC stationary phases. An imprinting factor (IF) of 2.93 was observed for the TSA, indicating the selectivity of the imprinted sites for the template. Studies using the D- and L-enantiomers of the phenylalaninamide analogue of the template showed enantioselectivity in the case of the imprinted polymer, α = 1.10, though not in the case of the non-imprinted reference polymer (1.00). Using UV-spectroscopy based polymer-ligand binding studies, a maximum theoretical capacity (Bmax) of 0.059 ± 0.004 mmol·g-1 was observed for the imprinted polymer. Conclusively, an imprinted polymer with binding sites selective for the TSA was successfully prepared and shall subsequently be studied with respect to its capacity to catalyse the transamination reaction between pyridoxamine and indole-3-pyruvic acid to yield pyridoxal and tryptophan.
4

Mimicking the Outer Coordination Sphere in [FeFe]-Hydrogenase Active Site Models : From Extended Ligand Design to Metal-Organic Frameworks

Pullen, Sonja January 2017 (has links)
Biomimetic catalysis is an important research field, as a better understanding of nature´s powerful toolbox for the conversion of molecules can lead to technological progress. [FeFe]-hydrogenases are very efficient catalysts for hydrogen production. These enzymes play a crucial role in the metabolism of green algae and certain cyanobacteria. Their active site consists of a diiron complex that is embedded in an interactive protein matrix. In this thesis, two pathways for mimicking the outer coordination sphere effects resulting from the protein matrix are explored. The first is the construction of model complexes containing phosphine ligands that are coordinated to the iron center as well as covalently linked to the bridging ligand of the complex. The effect of such linkers is an increased energy barrier for the rotation of the Fe(CO2)(PL3)-subunit, which potentially could stabilize a terminal hydride that is an important intermediate in the proton reduction cycle. The second pathway follows the incorporation of [FeFe]-hydrogenase active site model complexes into metal-organic frameworks (MOFs). Resulting MOF-catalysts exhibit increased photocatalytic activity compared to homogenous references due to a stabilizing effect on catalytic intermediates by the surrounding framework. Catalyst accessibility within the MOF and the influence of the framework on chemical reactivity are examined in the work presented. Furthermore, an initial step towards application of MOF-catalysts in a device was made by interfacing them with electrodes. The work of this thesis highlights strategies for the improvement of biomimetic model catalysts and the knowledge gained can be transferred to other systems mimicking the function of enzymes.
5

hidroxilação de alcano por sistemas suportados em sílica e estudos exploratórios da oxidação do contaminante emergente triclosan

Falcão, Nathália Kellyne Silva Marinho 05 February 2016 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-06-28T12:13:34Z No. of bitstreams: 1 arquivototal.pdf: 5054699 bytes, checksum: b0c36e922ea87a1775b247b54f1978c1 (MD5) / Made available in DSpace on 2017-06-28T12:13:34Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5054699 bytes, checksum: b0c36e922ea87a1775b247b54f1978c1 (MD5) Previous issue date: 2016-02-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, cytochrome P450-inspired biomimetic oxidation systems were developed for aliphatic C–H bond activation and triclosan oxidation. Heterogenization of Mn(III) N-pyridylporphyrin derivatives onto silica gel resulted in three groups of catalysts. Immobilization of Mn(III) N-pyridylporphyrins (MnT-X-PyPCl, X = 2, 3, 4) on chloropropylfunctionalized silica gel (Sil-Cl) yielded the first group of catalysts, Sil-Cl/MnT-X-PyPCl. The second group was prepared by in situ methylation of Sil-Cl/MnT-X-PyPCl materials resulting in the Sil-Cl/MnT-X-PyPCl/MeOTs materials. Finally the third group of catalysts were prepared via electrostatic immobilization of Mn(III) N-methylpyridiniumporphyrins (MnTM-X-PyPCl5, X = 2, 3, 4) onto unfunctionalized silica gel to yield SiO2/MnTM-XPyPCl5 (X = 2, 3, 4). These materials were studied as catalysts for iodosylbenzene-based hydroxylation reactions of the model substrate cyclohexane. The heterogenized catalysts proved to be more efficient, selective and oxidatively stable than the corresponding homogeneous systems for cyclohexane oxidation. No significant loss in catalytic efficiency was observed upon recycling of these materials. The increase in Mn(III)/Mn(II) reduction potentials associated with the alkylation of the pyridyl moieties of Sil-Cl/MnT-XPyPCl/MeOTs (X = 2, 3, 4) materials did not result in significant changes in catalytic efficiency as compared with the non-methylated starting materials Sil-Cl/MnT-X-PyPCl (X = 2, 3, 4). The PhIO-oxidation of the emerging contaminant triclosan under homogenous conditions was carried out using Mn porphyrins as biomimetic catalysts for P450-based xenobiotic degradation. The second generation catalyst Mn(III) meso-tetrakis(2,6- dichlorophenyl)porphyrin chloride, MnTDCPPCl, was more efficient and oxidatively stable than its first generation analogue Mn(III) meso-tetraphenylporphyrin chloride, which was considerably destroyed during the reactions. GC-FID, HPLC-DAD and LC-MS/MS analyses were used to confirm the formation of two products already identified as in vivo metabolites of triclosan: 4-chlorocatechol and 2,4-dichlorophenol. LC-MS/MS spectra of reation mixture indicated the formation of four additional triclosan degradation products (m/z 270, 323, 448, and 483), whose structural identity and biological relevance have yet to be confirmed. / Neste trabalho foram desenvolvidos modelos biomiméticos dos citocromos P450 pela heterogeneização das N-piridilporfirinas de Mn(III) em sílica-gel, resultando em três classes de catalisadores. A primeira classe descreve a imobilização das N-piridilporfirinas de Mn(III) (MnT-X-PyPCl, X = 2, 3, 4) em sílica-gel funcionalizada com o grupo cloropropila (Sil-Cl), a segunda classe envolve a metilação in situ dos materiais obtidos anteriormente e a terceira classe corresponde ao ancoramento eletrostático das N-metilpiridinioporfirinas de Mn(III) (MnTM-X-PyPCl5, X = 2, 3, 4) em sílica-gel in natura, sendo denominados como Sil-Cl/MnT-X-PyPCl, Sil-Cl/MnT-X-PyPCl/MeOTs e SiO2/MnTM-X-PyPCl5 (X = 2, 3, 4), respectivamente. Estes materiais foram empregados em reações de hidroxilação do substrato modelo cicloexano por iodosilbenzeno (PhIO). Os catalisadores heterogeneizados mostram-se mais eficientes, seletivos e resistentes à destruição catalítica do que os sistemas em fase homogênea, além de não serem observadas perdas significativas na eficiência catalítica após reúsos desses materiais. O aumento do potencial de redução Mn(III)/Mn(II) associado ao aumento do grau de alquilação nos catalisadores Sil-Cl/MnT-X-PyPCl/MeOTs (X = 2, 3, 4) não levaram a alterações significativas na eficiência catalítica desses materiais em comparação aos materiais de partida Sil-Cl/MnT-X-PyPCl (X = 2, 3, 4). A investigação da atividade catalítica das Mn-porfirinas de primeira e segunda geração, cloreto de mesotetrafenilporfirinatomanganês (III) (MnTPPCl) e cloreto de meso-tetraquis(2,6- diclorofenil)porfirinatomanganês (III) (MnTDCPPCl), na oxidação do contaminante emergente triclosan revelou que estes modelos biomiméticos podem efetuar a degradação deste xenobiótico. A MnTDCPPCl mostrou-se mais eficiente do que seu análogo de primeira geração MnTPPCl, que foi mais degradado durante as reações. Pelas técnicas de GC-FID, HPLC-DAD e LC-MS/MS foi possível confirmar a formação de dois produtos já identificados na literatura como metabólitos in vivo: 4-clorocatecol e 2,4-diclorofenol. Ainda por LC/MS-MS pode-se identificar a formação de mais quatro produtos de degradação do triclosan ainda não definidos (m/z 270, 323, 448 e 483)

Page generated in 0.0693 seconds