Return to search

Jeux de Réalisabilité en Arithmétique Classique.

Ce travail est devoué à la Réalisabilité de Krivine, se focalisant sur les aspects calculatoires des réalisateurs des formules. Chaque formule a un jeu associé. Chaque preuve fournit un therme capable d'implémenter une stratégie gagnante pour le jeux associé à la formule qu'elle démontre. Une preuve est, par adéquation, un combinateur capable de prendre des stratégies gagnantes pour les hypothèses et les combiner pour rendre une stratégie gagnante pour la conclusion. Y-sont abordés: A. Le problème de l'espécification, consistant a décrire en termes calculatoires les réalisateurs d'une formule donée. Des nombreaux examples y-sont traités. B. On étudie une preuve en tant que combinateur de stratégies gagnantes: On pose une implication $A\to B$ où $A$ et $B$ sont des formules $\Sigma^0_2$. Soit $C$ la forma normale prenexe de $A\to B$. On étudie une preuve de $A, C\to B$ en tant que combinateur de stratégies gagnantes. En faisant ce travail, certaines techniques sont développées pour tracer l'éxécution d'un processus, dont notamment la "méthode des fils".

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00594974
Date18 December 2008
CreatorsGuillermo,, Mauricio
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds