Cardiovascular disease (CVD) is the leading cause of morbidity, mortality, premature death and reduced quality of life for the citizens of the EU. It has been reported that CVD represents a major economic load on health care sys- tems in terms of hospitalizations, rehabilitation services, physician visits and medication. Data Mining techniques with clinical data has become an interesting tool to prevent, diagnose or treat CVD. In this thesis, Knowledge Dis- covery and Data Mining (KDD) was employed to analyse clinical and demographic data, which could be used to diagnose coronary artery disease (CAD). The exploratory data analysis (EDA) showed that female patients at an el- derly age with a higher level of cholesterol, maximum achieved heart rate and ST-depression are more prone to be diagnosed with heart disease. Furthermore, patients with atypical angina are more likely to be at an elderly age with a slightly higher level of cholesterol and maximum achieved heart rate than asymptotic chest pain patients. More- over, patients with exercise induced angina contained lower values of maximum achieved heart rate than those who do not experience it. We could verify that patients who experience exercise induced angina and asymptomatic chest pain are more likely to be diagnosed with heart disease. On the other hand, Logistic Regression, K-Nearest Neighbors, Support Vector Machines, Decision Tree, Bagging and Boosting methods were evaluated by adopting a stratified 10 fold cross-validation approach. The learning models provided an average of 78-83% F-score and a mean AUC of 85-88%. Among all the models, the highest score is given by Radial Basis Function Kernel Support Vector Machines (RBF-SVM), achieving 82.5% ± 4.7% of F-score and an AUC of 87.6% ± 5.8%. Our research con- firmed that data mining techniques can support physicians in their interpretations of heart disease diagnosis in addition to clinical and demographic characteristics of patients.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-233978 |
Date | January 2018 |
Creators | Fernandez Sanchez, Javier |
Publisher | KTH, Skolan för kemi, bioteknologi och hälsa (CBH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2018:80 |
Page generated in 0.0019 seconds