Recent climate changes show that the historical record is not an appropriate analog for future climate conditions. This understanding calls into question management decisions that assume climate stationarity and consequently the demand for climate information has increased in order to help frame climate risk more accurately. However, deficits in knowledge about climate impacts and weak connections between existing information and resource managers are two barriers to effective incorporation of climate information in resource management, development, risk management, and other climate-sensitive decisions. In research presented here, I showcase results that address knowledge gaps in the impact of climate on glacial resources in Bolivia, South America. I present a mixing model analysis using isotopic and anion tracers to estimate that glacial meltwater contributed about 50% of the water to streams and reservoirs in La Paz region of Bolivia during the 2011 wet and 2012 dry seasons. To assess how future warming may impact water supplies, I develop a temperature-driven empirical model to estimated changes in a future glacial area. Surface temperature changes were extracted from a multi-model ensemble of global climate models produced for the latest Intergovernmental Panel on Climate Change (IPCC) fifth assessment report and for two greenhouse gas emission scenarios. In both scenarios, declines in glacial area are substantial. For many small glaciers, temperatures at the toe of each glacier rise above the glacier's maximum elevation by 2050 suggesting that water resources will be substantially impacted with continued warming. While these results address a knowledge gap, the extent to which they inform resource management is unknown because the research was conducted without an explicit connection to resource management. Information produced in this fashion is generally acknowledged as being less immediately useful for decision-making because of access and comprehension barriers. These challenges may be mollified, however, with information management strategies. Therefore, I present results from an experiment to see if translating and contextualizing existing climate-related information - information produced similarly to the glacier results highlighted above - help facilitate its use. During a drought afflicted period in Arizona and New Mexico, a monthly synthesis of climate impacts information was disseminated to more than 1400 people. Survey responses from 117 people who consulted the information indicated that the majority of them made at least one drought-related decision and the information in the synthesis at least moderately influenced the majority of those decisions. In addition, more than 90% of the survey respondents indicated that the synthesis improved their understanding of climate and drought; it also helped the majority of them better prepare for drought. The results demonstrate that routine interpretation and synthesis of existing climate information can help enhance access to and understanding of climate information.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/347309 |
Date | January 2015 |
Creators | Guido, Zack Scott |
Contributors | Papuga, Shirley A., Papuga, Shirley A., Garfin, Gregg, Russell, Joellen, Buizer, James, McIntosh, Jennifer |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0015 seconds