Neste trabalho são apresentados modelos de regressão com respostas bivariadas obtidos através de funções cópulas. O objetivo de utilizar estes modelos bivariados é modelar a correlação entre eventos e captar nos modelos de regressão a influência da associação entre as variáveis resposta na presença de censura nos dados. Os parâmetros dos modelos, são estimados por meio dos métodos de máxima verossimilhança e jackknife. Alguns métodos de análise de sensibilidade como influência global, local e local total de um indivíduo, são introduzidos e calculados considerando diferentes esquemas de perturbação. Uma análise de resíduos foi proposta para verificar a qualidade do ajuste dos modelos utilizados e também foi proposta novas medidas de resíduos para respostas bivariadas. Métodos de simulação de Monte Carlo foram conduzidos para estudar a distribuição empírica dos resíduos marginais e bivariados propostos. Finalmente, os resultados são aplicados à dois conjuntos de dados dsponíveis na literatura. / In this work bivariate response regression models are presented with the use of copulas. The objective of this approach is to model the correlation between events and capture the influence of this correlation in the regression parameters. The models are used in the context of survival analysis and are ¯tted to two data sets available in the literature. Inferences are obtained using maximum likelihood and Jackknife methods. Sensitivity techniques such as local and global in°uence are proposed and calculated. A residual analysis is proposed to check the adequacy of the models and simulation methods are used to asses the empirical distribution of the marginal univariate and bivariate residual measures proposed.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25032008-151751 |
Date | 01 February 2008 |
Creators | Gomes, Eduardo Monteiro de Castro |
Contributors | Ortega, Edwin Moises Marcos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0032 seconds