As teorias que sustentam os modelos de precificação têm obtido resultados pouco satisfatórios ou insatisfatórios, uma vez que em cada estudo busca aproximar-se da realidade por apenas uma face, não observando o problema de todos os ângulos. Nesse sentido, percebeu-se um gap nos estudos de previsão, explorar sob outras lentes a dinâmica das variáveis do mercado que influenciam a formação do preço para o seu prévio monitoramento. Assim, o objetivo desta pesquisa foi construir uma ferramenta de apoio à decisão que pudesse prever, periodicamente, o preço futuro de uma commodity a curto e médio prazo, notadamente para o butadieno, um derivado do petróleo. Para que isto fosse possível, foi realizada a datação dos pontos de mudança do preço dessa commodity, frente aos acontecimentos históricos e, a partir daí, construído o estudo sobre três estruturas: mercado, política e econômica. A partir de então, observou-se quais seriam as variáveis mais consistentes para formar a base da pesquisa. As previsões obtidas revelam um desempenho superior às pesquisas anteriormente realizadas. Assim, a análise da previsão dos pontos de mudança constitui um instrumento informativo para sinalizar o comportamento futuro do preço da commodity do butadieno. A ferramenta utilizada para o modelo de precificação de modo a compreender a natureza das flutuações foram as Redes Bayesianas, que apresentam a capacidade de expressar as probabilidades e de um conjunto de variáveis aleatórias previamente definidas, e fazer predições adequadas. A inferência sobre o preço da commodity do butadieno, a curto e médio prazo, é realizada com o auxílio do software GeNIe 2.0. Conclui-se que investir em pesquisas que utilizem de Inteligência Artificial como métodos preditivos, como a utilização de Redes Bayesianas apresenta a vantagem de compreender a relação causa e efeito através da análise de Cenários. Assim, o objetivo de construir uma ferramenta de apoio à decisão que pudesse prever, periodicamente, o preço do butadieno a curto e médio prazo, foi alcançado. Para determinado período houve 84% de chances de acerto nas previsões. / The theories that support pricing models have obtained little satisfactory or unsatisfactory results, once each study examines only one aspect of reality, without studying the problem as a whole. In this sense its necessary to explore under other aspects the dynamics of market variables that influence the pricing for its prior monitoring. The objective of this research was to build a decision support tool capable of periodically forecast the future price of a commodity in the short and medium term, especially for butadiene, an oil derivative. To make it possible, was done the dating of turning points in the price of this commodity compared to the historical events and based on these data to build this study on three structures: market, political and economic. Then, we identified the most consistent variables to form the basis of the research. The forecasts obtained show a higher performance compared to previous investigations. Thus, the forecast analysis of turning points is an informative tool to signal the future behavior of the price of this commodity. To understand the nature of these fluctuations, the method used in the pricing model were the Bayesian networks, which are capable of expressing the probabilities of a set of random variables defined previously and make appropriate predictions. The inference on the commodity price of butadiene – in the short and medium term, was performed using the Genie 2.0 software. The conclusion was that investing in research using artificial intelligence and predictive methods such as the Bayesian networks, has the advantage of understanding the relationship of cause and effect through scenario analysis. So the objective of building a decision support tool that can predict periodically, the price of butadiene in the short and medium term, has been achieved. For certain period was 84% accurate in forecasts of chances.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/127232 |
Date | January 2014 |
Creators | Aguiar, Sandra da Cruz Garcia do Espírito Santo |
Contributors | Borenstein, Denis |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds