Return to search

Experimental investigation of thermal and fluid dynamical behavior of flows in open-ended channels : Application to Building Integrated Photovoltaic (BiPV) Systems

Among technologies capable to produce electricity locally without contributing to GHG releases, building integrated PV systems (BIPV) could be major contributor. However, when exposed to intense solar radiation, the temperature of PV modules increase significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decrease the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. An experimental investigation of heat transfer and fluid flow characteristics of natural convection of air in vertical and inclined open-ended heated channels is therefore undertaken so as provide reliable information for the design of BIPV. Two experimental set ups were developed and used during the present investigations; one located at the CETHIL laboratory in Lyon, the F-device and the other located at the University of New South Wales in Sydney, the R-device. Both channels consisted of two wide parallel plates each of which could be subjected to controlled uniform or non-uniform heat fluxes. The investigation has been conducted by analyzing the mean wall temperatures, measured by thermocouples and mean velocity profiles and turbulent quantity distributions of the flow, measured with a PIV system. Flow patterns close to the heated faces were also investigated. The study is particularly focused on the transition region from laminar to turbulent flow. Three different heating geometric arrangements are examined in the modified Rayleigh number range from 3.86 x 105 to 6.22 x 106. The first is a vertical channel with one wall uniformly heated while the other was unheated, the second was a vertical channel in which both walls were non-uniformly heated and the third is an inclined channel uniformly heated from above. In the vertical configurations the width-to-height channel aspect ratio was fixed at 1:15 and in the inclined ones at 1:16. It is shown that the flow is very sensitivity to disturbances emanating from the ambient conditions. Moreover, the propagation of vortical structures and unsteadiness in the flow channel which are necessary to enhance heat transfer, occurred downstream of the mid-channel section at Ra* = 3.5 x 106 for uniformly and asymmetrically heated channels inclined between 60° and 90° to the horizontal. Indeed, these unsteady flow phenomena appears upstream the location of the inflexion point observed in the temperature excess distribution of the heated wall. In the case of non-uniform heating on both sides of the channel, a stronger 'disruption mechanism' exists, which leads to enhanced mixing and increased Reynolds stresses over most of the width of the channel. Empirical correlations of average Nusselt number as a function of modified Rayleigh number were obtained for each configuration.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00961231
Date03 July 2013
CreatorsSanvicente, Estibaliz
PublisherINSA de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds