Return to search

Comparing Machine Learning Algorithms and Feature Selection Techniques to Predict Undesired Behavior in Business Processesand Study of Auto ML Frameworks

In recent years, the scope of Machine Learning algorithms and its techniques are taking up a notch in every industry (for example, recommendation systems, user behavior analytics, financial applications and many more). In practice, they play an important role in utilizing the power of the vast data we currently generate on a daily basis in our digital world.In this study, we present a comprehensive comparison of different supervised Machine Learning algorithms and feature selection techniques to build a best predictive model as an output. Thus, this predictive model helps companies predict unwanted behavior in their business processes. In addition, we have researched for the automation of all the steps involved (from understanding data to implementing models) in the complete Machine Learning Pipeline, also known as AutoML, and provide a comprehensive survey of the various frameworks introduced in this domain. These frameworks were introduced to solve the problem of CASH (combined algorithm selection and Hyper- parameter optimization), which is basically automation of various pipelines involved in the process of building a Machine Learning predictive model. / Under de senaste åren har omfattningen av maskininlärnings algoritmer och tekniker tagit ett steg i alla branscher (till exempel rekommendationssystem, beteendeanalyser av användare, finansiella applikationer och många fler). I praktiken spelar de en viktig roll för att utnyttja kraften av den enorma mängd data vi för närvarande genererar dagligen i vår digitala värld.I den här studien presenterar vi en omfattande jämförelse av olika övervakade maskininlärnings algoritmer och funktionsvalstekniker för att bygga en bästa förutsägbar modell som en utgång. Således hjälper denna förutsägbara modell företag att förutsäga oönskat beteende i sina affärsprocesser. Dessutom har vi undersökt automatiseringen av alla inblandade steg (från att förstå data till implementeringsmodeller) i den fullständiga maskininlärning rörledningen, även känd som AutoML, och tillhandahåller en omfattande undersökning av de olika ramarna som introducerats i denna domän. Dessa ramar introducerades för att lösa problemet med CASH (kombinerat algoritmval och optimering av Hyper-parameter), vilket i grunden är automatisering av olika rörledningar som är inblandade i processen att bygga en förutsägbar modell för maskininlärning.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-285559
Date January 2020
CreatorsGarg, Anushka
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:789

Page generated in 0.002 seconds