Global energy demand is predicted to rise in the coming decades, necessitating a shift to renewable energy sources to mitigate greenhouse gas emissions. However, due to the inability to supply renewable energy around the clock, it is estimated that only by adding an important technology, carbon capture and storage (CCS), it could be possible to reduce 80% of the 1990s greenhouse gas emissions. CCS aims to reduce anthropogenic carbon emissions by capturing CO2 from flue gases, transporting, and permanently storing or reutilizing industrially. The CCS approach includes three technologies: post-combustion capture, pre-combustion capture, and oxyfuel combustion, with the latter being the emphasis of this thesis. Based on the case study of Mälarenergi’s Refused-derived waste-fired CHP plant, this thesis investigates the viability of converting existing non-fossil fueled CHP plants to oxyfuel combustion. A thorough technical investigation based on analyzing the impact of oxyfuel combustion on system performance was conducted through system modeling using a process simulator, Aspen plus. The model in this thesis considers the development of an air separation unit (ASU), a CHP plant, and a cryogenic CO2 purification unit (CPU). All of which are validated through calibration and comparison with real-world data and similar work. To investigate the influence of employing oxyfuel combustion on the generation of both heat and electricity, two different scenarios were comprised, including recirculating flue gas before and after flue gas condensation. In addition, an analysis of the oxygen purity was conducted to assess the most optimal parameters with the least impact on system performance. Moreover, a detailed eco- nomic assessment comprising the costs of integrating oxyfuel combustion was also conducted. The findings of this thesis show that integrating waste incineration CHP plants with oxyfuel combustion for CO2 capture entails promising features under the condition of 97% oxygen purity and a flue gas recirculation system taking place after flue gas condensation. This is owing to (i) modest imposed energy penalty of approximately 8.7%, (ii) high CO2 recovery ratio, around 92.4%, (iii) total investment cost of approximately 554 M$ during a 20-year lifetime, and (iv) cost of captured CO2 of around 76 $/ton. Aside from system modeling, this thesis pre- sents an overview of the current state-of-the-art technology on the different separation and capture mechanisms. It is important to highlight that the goal of this thesis is not to provide a comprehensive review but rather to present an overall picture of the maturity of the different mechanisms. The findings point to the cryogenic separation mechanism as the most mature technology for both oxygen production and capturing of CO2 during oxyfuel combustion.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-55210 |
Date | January 2021 |
Creators | Saleh, Mostafa, Hedén Sandberg, Anton |
Publisher | Mälardalens högskola, Akademin för ekonomi, samhälle och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds