Projektet genomfördes i samarbete med Siemens Healthineers i syfte att utreda möjligheter till att prognostisera vårdflöden. Det genom att undersöka hur big data tillsammans med maskininlärning kan utnyttjas för prediktiv analys. Projektet utgjordes av två fallstudier med mål att, baserat på data från tidigare MRT-undersökningar, förutspå undersökningstider för kommande undersökningar respektive identifiera patienter som riskerar att missa inbokad undersökning. Fallstudierna utfördes med hjälp av programmeringsspråket R och tre olika inbyggda funktioner för maskininlärning användes för att ta fram prediktiva modeller för respektive fallstudie. Resultaten från fallstudierna gav en indikation på att det med en större datamängd av bättre kvalitet skulle vara möjligt att förutspå undersökningstider och vilka patienter som riskerar att missa sin inbokade undersökning. Det talar för att den här typen av prediktiva analyser kan användas för att prognostisera vårdflöden, något som skulle kunna bidra till ökad effektivitet och kortare väntetider i vården. / This project was performed in cooperation with Siemens Healthineers. The project aimed to investigate possibilities to forecast healthcare processes by investigating how big data and machine learning can be used for predictive analytics. The project consisted of two separate case studies. Based on data from previous MRI examinations the aim was to investigate if it is possible to predict duration of MRI examinations and identify potential no show patients. The case studies were performed with the programming language R and three machine learning methods were used to develop predictive models for each case study. The results from the case studies indicate that with a greater amount of data of better quality it would be possible to predict duration of MRI examinations and potential no show patients. The conclusion is that these types of predictive models can be used to forecast healthcare processes. This could contribute to increased effectivity and reduced waiting time in healthcare.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-211286 |
Date | January 2017 |
Creators | Corné, Josefine, Ullvin, Amanda |
Publisher | KTH, Skolan för teknik och hälsa (STH) |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-STH ; 2017:51 |
Page generated in 0.0024 seconds