Return to search

Ductile fracture simulation using the strong discontinuity method / Simulation de la rupture ductile par application de la méthode des discontinuités fortes

Dans un contexte d’évaluation de la criticité des chargements, les travaux de thèse ont les objectifs suivants : prendre en compte les phénomènes sous-jacents à le rupture ductile : les phénomènes de dissipation volumique (plasticité et endommagement) et surfaciques (fissuration). On s'intéresse également à régulariser la solution vis-à-vis du maillage, à prédire le phénomène de transition de mode de rupture plan vers un mode de propagation oblique observé pour certains essais. La méthode utilisée est basée sur la méthode des discontinuités fortes. Un des enjeux majeurs de ces travaux est d’étendre son champ d'application au cadre de la modélisation de la rupture ductile, notamment en présence de plasticité et d'endommagement dans le volume. Une première partie des travaux est consacré à l'établissement d'un modèle en hypothèse de petites déformations, avec un modèle matériau de plasticité et d'endommagement couplé de Lemaitre pour le volume et un modèle cohésif endommageable pour le comportement surfacique. Les deux modes de rupture I et II ont été considérés dans les essais numériques. Des résultats montrant les capacités de régularisation de la méthode employée ont été présentés pour divers essais. Une seconde partie des travaux a été consacré à la formulation d'un modèle en hypothèse de grandes transformations, avec également des résultats probants en termes de régularisation de la dépendance à la taille de maille. Les deux éléments présentés ont été implémentés en formulation implicite et explicite, dans FEAP (Finite Element Analysis Program), logiciel académique développé à UC Berkeley par Taylor, et plus récemment dans le logiciel de calcul Eléments Finis Abaqus. / In the context of loadings criticality analysis, the thesis work have the following objectives : to take into account the underlying phenomena to ductile fracture : the volumetrie (plasticity and damage) and surfacic (fracture) dissipativ mechanisms. We also aim at regularizing the solution with regards to meshing, predicting the transition from a straigh crack propagation to a slant fracture mode observed for certain tests. The chosen method relies on the stron discontinuity method. One of the major challenges of this work is to extend its framework to the ductile fractur modeling framework, by accounting for plasticity and damage in the bulk. The first part of this work is dedicated to th establ'ishment of a model in small strain hypothesis, with a material model that takes into account coupied plasticity an damage in the QUik and a damageable model for the cohesive surfacic behavior. Both modes 1 and Il have been taken int) account in thnumerical examples. Results attesting the regularizing capabilities of the method are presented fo different tests. The second part of this work is dedicated to the formulation of a finite strain mode!, and results showin the good regularizing capabilities of the method are also shown. Both elements have been implemented in FEAP (Finit Element Analysis Program), an academie software developed at UC Berkeley by Taylor, and more recently in the finit element software Abaqus.

Identiferoai:union.ndltd.org:theses.fr/2015COMP2243
Date16 December 2015
CreatorsBude, Jérémie
ContributorsCompiègne, Brancherie, Delphine, Roelandt, Jean-Marc
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds