This thesis will cover the topic of cyber security in vehicles. Current vehicles contain many computers which communicate over a controller area network. This network has many vulnerabilities which can be leveraged by attackers. To combat these attackers, intrusion detection systems have been implemented. The latest research has mostly focused on the use of deep learning techniques for these intrusion detection systems. However, these deep learning techniques are not foolproof and possess their own security vulnerabilities. One such vulnerability comes in the form of adversarial samples. These are attacks that are manipulated to evade detection by these intrusion detection systems. In this thesis, the aim is to show that the known vulnerabilities of deep learning techniques are also present in the current state-of-the-art intrusion detection systems. The presence of these vulnerabilities shows that these deep learning based systems are still to immature to be deployed in actual vehicles. Since if an attacker is able to use these weaknesses to circumvent the intrusion detection system, they can still control many parts of the vehicles such as the windows, the brakes and even the engine. Current research regarding deep learning weaknesses has mainly focused on the image recognition domain. Relatively little research has investigated the influence of these weaknesses for intrusion detection, especially on vehicle networks. To show these weaknesses, firstly two baseline deep learning intrusion detection systems were created. Additionally, two state-of-the-art systems from recent research papers were recreated. Afterwards, adversarial samples were generated using the fast gradient-sign method on one of the baseline systems. These adversarial samples were then used to show the drop in performance of all systems. The thesis shows that the adversarial samples negatively impact the two baseline models and one state-of-the-art model. The state-of-the-art model’s drop in performance goes as high as 60% in the f1-score. Additionally, some of the adversarial samples need as little as 2 bits to be changed in order to evade the intrusion detection systems. / Detta examensarbete kommer att täcka ämnet cybersäkerhet i fordon. Nuvarande fordon innehåller många datorer som kommunicerar över ett så kallat controller area network. Detta nätverk har många sårbarheter som kan utnyttjas av angripare. För att bekämpa dessa angripare har intrångsdetekteringssystem implementerats. Den senaste forskningen har mestadels fokuserat på användningen av djupinlärningstekniker för dessa intrångsdetekteringssystem. Dessa djupinlärningstekniker är dock inte idiotsäkra och har sina egna säkerhetsbrister. En sådan sårbarhet kommer i form av kontradiktoriska prover. Dessa är attacker som manipuleras för att undvika upptäckt av dessa intrångsdetekteringssystem. I det här examensarbetet kommer vi att försöka visa att de kända sårbarheterna hos tekniker för djupinlärning också finns i de nuvarande toppmoderna systemen för intrångsdetektering. Förekomsten av dessa sårbarheter visar att dessa djupinlärningsbaserade system fortfarande är för omogna för att kunna användas i verkliga fordon. Eftersom om en angripare kan använda dessa svagheter för att kringgå intrångsdetekteringssystemet, kan de fortfarande kontrollera många delar av fordonet som rutorna, bromsarna och till och med motorn. Aktuell forskning om svagheter i djupinlärning har främst fokuserat på bildigenkänningsdomänen. Relativt lite forskning har undersökt inverkan av dessa svagheter för intrångsdetektering, särskilt på fordonsnätverk. För att visa dessa svagheter skapades först två baslinjesystem för djupinlärning intrångsdetektering. Dessutom återskapades två toppmoderna system från nya forskningsartiklar. Efteråt genererades motstridiga prover med hjälp av den snabba gradient-teckenmetoden på ett av baslinjesystemen. Dessa kontradiktoriska prover användes sedan för att visa nedgången i prestanda för alla system. Avhandlingen visar att de kontradiktoriska proverna negativt påverkar de två baslinjemodellerna och en toppmodern modell. Den toppmoderna modellens minskning av prestanda går så högt som 60% i f1-poängen. Dessutom behöver några av de kontradiktoriska samplen så lite som 2 bitar att ändras för att undvika intrångsdetekteringssystem.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321412 |
Date | January 2022 |
Creators | Zenden, Ivo |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:583 |
Page generated in 0.0019 seconds