For K a cubic field with only one real embedding and α, β ϵ K, we show how to construct an increasing sequence {m_n} of positive integers and a subsequence {ψ_n} such that (for some constructible constants γ₁, γ₂ > 0): max{ǁm_nαǁ,ǁm_nβǁ} < [(γ₁)/(m_n^(¹/²))] and ǁψ_nαǁ < γ₂/[ψ_n^(¹/²) log ψ_n] for all n. As a consequence, we have ψ_nǁψ_nαǁǁψ_nβǁ < [(γ₁ γ₂)/(log ψ_n)] for all n, thus giving an effective proof of Littlewood's conjecture for the pair (α, β). Our proofs are elementary and use only standard results from algebraic number theory and the theory of continued fractions.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/338879 |
Date | January 2014 |
Creators | Hinkel, Dustin |
Contributors | Rychlik, Marek, Rychlik, Marek, Joshi, Kirti, Madden, Daniel, Thakur, Dinesh |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.002 seconds