Return to search

Towards Designing Energy Efficient Symmetric Key Protocols

Energy consumption by various modern symmetric key encryption protocols (DES,
3-DES, AES and, Blowfish) is studied from an algorithmic perspective. The work
is directed towards redesigning or modifying the underlying algorithms for these
protocols to make them consume less energy than they currently do. This research
takes the approach of reducing energy consumption by parallelizing the
consecutive memory accesses of symmetric key encryption algorithms. To achieve
parallelization, an existing energy complexity model is applied to symmetric key
encryption algorithms. Inspired by the popular DDR3 architecture, the model assumes
that main memory is divided into multiple banks, each of which can store
multiple blocks. Each block in a bank can only be accessed from a cache of its
own, that can hold exactly one block. However all the caches from different banks
can be accessed simultaneously. In this research, experiments are conducted to
measure the difference in energy consumption by varying the level of parallelization,
i.e. variations of, number of banks that can be accessed in parallel. The
experimental results show that the higher the level of parallelism, smaller is the
energy consumption.

Identiferoai:union.ndltd.org:unf.edu/oai:digitalcommons.unf.edu:etd-1891
Date01 January 2018
CreatorsTalluri, Sai Raghu
PublisherUNF Digital Commons
Source SetsUniversity of North Florida
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUNF Graduate Theses and Dissertations

Page generated in 0.0016 seconds